Skip to main content
Log in

Water vapor clustering in the field of Na+ cation inside a nanopore with hydrophilic walls. 1. Spatial organization

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Computer simulation has been employed to study the structure of a hydration shell of a Na+ ion under the conditions of a planar nanopore with structureless hydrophilic walls at 298 K. Intermolecular interactions have been described in terms of a detailed model calibrated with respect to experimental data on the free energy and enthalpy of the initial reactions of vapor molecule attachment to the ion. In the field of hydrophilic walls, the hydration shell is disrupted into an enveloping part and that spread over the surface of the walls. At the final stage of hydration, states with asymmetric distribution of molecules on opposite walls survive and the phenomenon of ion displacement out of its shell is stably reproduced. The orientational molecular order in the system strongly depends on the degree of wall hydrophilicity. The hydration shell of a sodium ion is less stable with respect to disturbances generated by the field of hydrophilic walls than the shell of a chlorine ion is.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parshutkina, I.P., Churilova, I.L., Plaude, N.O., and Grishina, N.P., Tr. Tsentr. Aerolog. Observatorii, St. Petersburg: Gidrometeoizdat, 1996, no. 181, p. 69.

    Google Scholar 

  2. Kim, N.S., Shilin, A.G., and Shkodkin, A.V., Kolloidn. Zh., 1990, vol. 52, p. 579.

    CAS  Google Scholar 

  3. Zalikhanov, M.Ch., Fedchenko, L.M., Ekba, Ya.A., Sviridenko, A.S., Kaplan, L.G., Atabiev, M.D., and Zakinyan, R.G., Abstracts of Papers, Vses. konf. “Aktivnye vozdeistviya na gidrometeorologicheskie protsessy” (All-Union Conf. “Active Influence on Hydrometeorological Processes”), St. Petersburg: Gidrometeoizdat, 1995, part 1, p. 11.

    Google Scholar 

  4. Vodop’yanov, M.Ya., Permyakov, G.N., and Churbanov, E.V., Abstracts of papers, Vses. konf. “Aktivnye vozdeistviya na gidrometeorologicheskie protsessy” (AllUnion Conf. “Active Influence on Hydrometeorological Processes”), St. Petersburg: Gidrometeoizdat, 1995, part 2, p. 166.

    Google Scholar 

  5. Dessons, J., J. Appl. Meteorol., 1998, vol. 37, p. 1588.

    Article  Google Scholar 

  6. Mather, G.K., Dixon, M.J., and De Jager, J.M., J. Appl. Meteorol., 1996, vol. 35, p. 1465.

    Article  Google Scholar 

  7. Rangno, A.L. and Hobbs, P.V., J. Appl. Meteorol., 1993, vol. 32, p. 1837.

    Article  Google Scholar 

  8. Rosenfeld, D. and Woodley, W.L., J. Appl. Meteorol., 1993, vol. 32, p. 1848.

    Article  Google Scholar 

  9. Holroyd, E.W., McPartland, J.T., and Super, A.B., J. Appl. Meteorol., 1998, vol. 37, p. 1125.

    Google Scholar 

  10. De Mott, P.J., Pinnegan, P.G., and Grant, L.O., J. Clim. Appl. Meteorol., 1983, vol. 22, p. 1190.

    Article  Google Scholar 

  11. Bakhanova, R.A., Kiselev, V.I., Kuku, E.I., and Oleinik, R.V., Tr. Ukr. Region. Nauchno-Issled. Gidrometeorol. Inst., Moscow: Gidrometeoizdat, 1989, no. 230, p. 11.

    Google Scholar 

  12. Bakhanova, R.A., Kuku, E.I., Silaev, A.V., Tovstenko, L.M., and Khusid, S.V., Abstracts of papers, Vses. konf. “Aktivnye vozdeistviya na gidrometeorologicheskie protsessy” (All-Union Conf. “Active Influence on Hydrometeorological Processes”), St. Petersburg: Gidrometeoizdat, 1995, part 2, p. 218.

    Google Scholar 

  13. Boris, R.D. and Duce, R.A., J. Appl. Meteorol., 1979, vol. 18, p. 1490.

    Article  Google Scholar 

  14. Morgan, G.M. and Alee, P.A., J. Appl. Meteorol., 1968, vol. 7, p. 241.

    Article  CAS  Google Scholar 

  15. Parungo, F.P., J. Appl. Meteorol., 1970, vol. 9, p. 468.

    Article  CAS  Google Scholar 

  16. Kim, N.S., Shilin, A.G., and Shkodkin, A.V., Abstracts of Papers, Vses. seminar “Aktivnye vozdeistviya na gradovye protsessy i perspektivy usovershenstvovaniya l’doobrazuyushchikh reagentov dlya praktiki aktivnykh vozdeistvii” (All-Union Workshop “Active Influence on Hail Processes and Prospects of Refining Ice-Forming Reagents for Practical Use”), Moscow: Gidrometeoizdat, 1991, p. 211.

    Google Scholar 

  17. Moulin, F., Picaud, S., Hoang, P.N.M., Partay, L., and Jedlovszky, P., Mol. Simul., 2006, vol. 32, p. 487.

    Article  CAS  Google Scholar 

  18. Moulin, F., Picaud, S., Hoang, P.N.M., and Jedlovszky, P., J. Chem. Phys., 2007, vol. 127, p. 164719.

    Article  CAS  Google Scholar 

  19. Shevkunov, S.V., Colloid J. (in press).

  20. Shevkunov, S.V., Colloid J. (in press).

  21. Shevkunov, S.V., Colloid J., 2014, vol. 76, p. 490.

    Article  CAS  Google Scholar 

  22. Shevkunov, S.V., Russ. J. Electrochem., 2014, vol. 50, p. 1118.

    Article  CAS  Google Scholar 

  23. Shevkunov, S.V., Zh. Fiz. Khim., 2014, vol. 88, p. 1556.

    Google Scholar 

  24. Shevkunov, S.V., Russ. J. Phys. Chem., 2014, vol. 88, p. 1744.

    Article  CAS  Google Scholar 

  25. Shevkunov, S.V., Russ. J. Electrochem., 2014, vol. 50, p. 1127.

    Article  CAS  Google Scholar 

  26. Zamalin, V.M., Norman, G.E., and Filinov, V.S., Metod Monte-Karlo v statisticheskoi termodinamike (Monte Carlo Simulation in Statistical Thermodynamics), Moscow Nauka, 1977.

    Google Scholar 

  27. Shevkunov, S.V., Colloid J., 2004, vol. 66, p. 230.

    Article  CAS  Google Scholar 

  28. Shevkunov, S.V., Colloid J., 2014, vol. 76, p. 753.

    Article  CAS  Google Scholar 

  29. Shevkunov, S.V., Russ. J. Electrochem., 2013, vol. 49, p. 228.

    Article  CAS  Google Scholar 

  30. Shevkunov, S.V., Russ. J. Electrochem., 2013, vol. 49, p. 238.

    Article  CAS  Google Scholar 

  31. Shevkunov, S.V., High Temp., 2012, vol. 50, p. 255.

    Article  CAS  Google Scholar 

  32. Shevkunov, S.V., Russ. J. Phys. Chem., 2011, vol. 85, p. 1584.

    Article  CAS  Google Scholar 

  33. Shevkunov, S.V., Colloid J., 2011, vol. 73, p. 135.

    Article  CAS  Google Scholar 

  34. Shevkunov, S.V., Colloid J., 2010, vol. 72, p. 93.

    Article  CAS  Google Scholar 

  35. Shevkunov, S.V., Colloid J., 2010, vol. 72, p. 107.

    Article  CAS  Google Scholar 

  36. Burnham, C.J., Petersen, M.K., Day, T.J.F., Iyengar, S.S., and Voth, G.A., J. Chem. Phys., 2006, vol. 124, p. 024327.

    Article  Google Scholar 

  37. Herce, D.H., Perera, L., Darden, T.A., and Sagui, C., J. Chem. Phys., 2005, vol. 122, p. 024513.

    Article  Google Scholar 

  38. Yoo, S., Lei, Y.A., and Zeng, X.C., J. Chem. Phys., 2003, vol. 119, p. 6083.

    Article  CAS  Google Scholar 

  39. Shevkunov, S.V., Colloid J., 2008, vol. 70, p. 784.

    Article  CAS  Google Scholar 

  40. Shevkunov, S.V., Colloid J., 2009, vol. 71, p. 406.

    Article  CAS  Google Scholar 

  41. Shevkunov, S.V., Russ. J. Phys. Chem., 2009, vol. 83, p. 972.

    Article  CAS  Google Scholar 

  42. Shevkunov, S.V., Colloid J., 2011, vol. 73, p. 275.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Shevkunov.

Additional information

Original Russian Text © S.V. Shevkunov, 2016, published in Kolloidnyi Zhurnal, 2016, Vol. 78, No. 2, pp. 225–239.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevkunov, S.V. Water vapor clustering in the field of Na+ cation inside a nanopore with hydrophilic walls. 1. Spatial organization. Colloid J 78, 242–256 (2016). https://doi.org/10.1134/S1061933X16020125

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X16020125

Keywords

Navigation