Skip to main content
Log in

On the evolution of a multicomponent droplet during nonisothermal diffusion growth or evaporation

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

A set of equations has been derived for the size, composition, and temperature of a multicomponent droplet of a nonideal solution during its diffusion nonisothermal condensation growth or evaporation in a multicomponent mixture of vapors with an incondensable carrier gas. In addition to complete equations for material and heat transfer in the vapor-gas medium surrounding the droplet, the derived set, in the general case, describes the nonstationary growth or evaporation of the droplet under arbitrary initial conditions (initial size and temperature of the droplet and the concentrations of the nonideal multicomponent solution in it) and the establishment of the stationary values of the composition, temperature, and the rate of variations in the size of the droplet with allowance for heat effects and diffusion and thermodiffusion material transfer, Stefan flux, motion of the droplet surface, and the nonideality of the solution in the droplet. A simplified set of equations obtained without taking into account the contributions from the flow, cross effects, and thermal expansion in the equations of the material and heat transfer in the vapor-gas medium has been considered. Equations describing growth/evaporation in the stationary regime have been analyzed for droplets of ideal multicomponent solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Onuki, A., Phase Transition Dynamics, Cambridge: Cambridge Univ. Press, 2004.

    Google Scholar 

  2. Balluffi, R.W., Allen, S.M., and Carter, W.C., Kinetics of Materials, New Jersey: Wiley, 2005.

    Book  Google Scholar 

  3. Fuchs, N.A., Evaporation and Droplet Growth in Gaseous Media, London: Pergamon, 1959.

    Google Scholar 

  4. Clement, C.F., in Environmental Chemistry of Aerosols, Colbeck, I., Ed., Oxford: Blackwell, 2008, p. 49.

  5. Piskunov, V.N., Dinamika aerozolei (Aerosol Dynamics), Moscow: FIZMATLIT, 2010.

    Google Scholar 

  6. Sazhin, S., J. Phys.: Conf. Ser., 2005, vol. 22, p. 174.

    CAS  Google Scholar 

  7. Sazhin, S.S., Elwardany, A.E., Krutitskii, P.A., Depredurand, V., Castanet, G., Lemoine, F., Sazhina, E.M., and Heikal, M.R., Int. J. Therm. Sci., 2011, vol. 50, p. 1164.

    Article  CAS  Google Scholar 

  8. Fisenko, S.P., Wang, W.N., Lenggoro, I.W., and Okuyama, K., Chem. Eng. Sci., 2006, vol. 61, p. 6029.

    Article  CAS  Google Scholar 

  9. Xue, H., Moyle, A.M., Magee, N., Harrington, J.Y., and Lamb, D., J. Atmos. Sci., 2005, vol. 62, p. 4310.

    Article  Google Scholar 

  10. Brenn, G., Deviprasath, L.J., Durst, F., and Fink, C., Int. J. Heat Mass Transfer, 2007, vol. 50, p. 5073.

    Article  Google Scholar 

  11. Devarakonda, V. and Ray, A.K., J. Colloid Interface Sci., 2000, vol. 221, p. 104.

    Article  CAS  Google Scholar 

  12. Lemoine, F. and Castanet, G., Exp. Fluids, 2013, vol. 54, no. 7, p. 1.

    Article  Google Scholar 

  13. Newbold, F.R. and Amundson, N.R., AIChE J., 1973, vol. 19, p. 22.

    Article  CAS  Google Scholar 

  14. Kulmala, M., Vesala, T., and Wagner, P.E., Proc. R. Soc. London A, 1993, vol. 441, p. 589.

    Article  CAS  Google Scholar 

  15. Vesala, T. and Kulmala, M., Physica A (Amsterdam), 1993, vol. 192, p. 107.

    Article  CAS  Google Scholar 

  16. Vesala, T., Kulmala, M., Rudolf, R., Vrtala, A., and Wagner, P.E., J. Aerosol Sci., 1997, vol. 28, p. 565.

    Article  CAS  Google Scholar 

  17. Mattila, T., Kulmala, M., and Vesala, T., J. Aerosol Sci., 1997, vol. 28, p. 553.

    Article  CAS  Google Scholar 

  18. Lehtinen, K.E.J., Kulmala, M., Vesala, T., and Jokiniemi, J.K., J. Aerosol Sci., 1998, vol. 29, p. 1035.

    Article  CAS  Google Scholar 

  19. Frank-Kamenetskii, D.A., Diffuziya i teploperedacha v khimicheskoi kinetike (Diffusion and Heat Transfer in Chemical Kinetics), Moscow: Nauka, 1967.

    Google Scholar 

  20. Kuni, F.M., Lezova, A.A., and Shchekin, A.K., Physica A (Amsterdam), 2009, vol. 388, p. 3728.

    Article  Google Scholar 

  21. Kuchma, A.E., Shchekin, A.K., and Kuni, F.M., Colloid J., 2011, vol. 73, p. 224.

    Article  CAS  Google Scholar 

  22. Kuchma, A.E., Shchekin, A.K., and Kuni, F.M., Physica A (Amsterdam), 2011, vol. 390, p. 3308.

    Article  CAS  Google Scholar 

  23. Kuchma, A.E. and Shchekin, A.K., in Nucleation Theory and Applications 2011, Schmelzer, J.W.P., Röpke, G., and Priezzhev, V.B., Eds., Dubna: JINR, 2011, p. 203.

  24. Kuchma, A.E. and Shchekin, A.K., Colloid J., 2012, vol. 74, p. 215.

    Article  CAS  Google Scholar 

  25. Martyukova, D.S., Kuchma, A.E., and Shchekin, A.K., Colloid J., 2013, vol. 75, p. 571.

    Article  CAS  Google Scholar 

  26. Shchekin, A.K., Kuni, F.M., and Lezova, A.A., Colloid J., 2011, vol. 73, p. 394.

    Article  CAS  Google Scholar 

  27. Kuchma, A.E., Martyukova, D.S., Lezova, A.A., and Shchekin, A.K., Colloids Surf. A, 2013, vol. 432, p. 147.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Shchekin.

Additional information

Original Russian Text © A.E. Kuchma, A.K. Shchekin, A.A. Lezova, D.S. Martyukova, 2014, published in Kolloidnyi Zhurnal, 2014, Vol. 76, No. 5, pp. 626–634.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuchma, A.E., Shchekin, A.K., Lezova, A.A. et al. On the evolution of a multicomponent droplet during nonisothermal diffusion growth or evaporation. Colloid J 76, 576–584 (2014). https://doi.org/10.1134/S1061933X14040085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X14040085

Keywords

Navigation