Skip to main content
Log in

Inhibition of Ostwald ripening in heptane/water miniemulsions

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The Ostwald ripening has been shown to cause the degradation of model low-concentrated heptane/water miniemulsions containing, as the only stabilizer, Tween 80 (Tw), hydroxypropyl cellulose (HPC), a drug (amlodipine (Am) or felodipine (F)), or a promoter of skin permeability (glyceryl monooleate (GMO)). The efficiency of the Ostwald ripening inhibition increases in the following series: Am < Tw < GMO < HPC < F. The analysis of different mechanisms of the Ostwald ripening inhibition by the hydrophilic (Tw, HPC) and lipophilic (Am, F, GMO) surface-active stabilizers has resulted in the preparation of a stable high-concentrated miniemulsion containing F, GMO, HPC, and Tw, this emulsion being promising for pharmaceutical fields of application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amselem, S. and Friedman, D., in Submicron Emulsions in Drug Targeting and Delivery, Benita, S., Ed., London: Harwood Academic, 1998, p. 153.

    Google Scholar 

  2. Benita, S., in Submicron Emulsions in Drug Targeting and Delivery, Florence, A.T. and Gregoriadis, G., Eds., Amsterdam: Harwood Academic, 1998, p. 119.

    Google Scholar 

  3. Zadymova, N.M., Poteshnova, M.V., and Kulichikhin, V.G., Colloid J., 2012, vol. 74, p. 541.

    Article  CAS  Google Scholar 

  4. Higuchi, W.J. and Misra, J., J. Pharm. Sci., 1962, vol. 51, p. 459.

    Article  CAS  Google Scholar 

  5. Davis, S.S. and Smith, A.L., in Theory and Practice of Emulsions Technology, Smith, A.L.,Ed., London: Academic, 1976, p. 325.

    Book  Google Scholar 

  6. Ugelstad, J. and Mork, P.C., Adv. Colloid Interface Sci., 1980, vol. 13, p. 101.

    Article  CAS  Google Scholar 

  7. Kabal’nov, A.S., Pertsov, A.V., and Shchukin, E.D., Kolloidn. Zh., 1984, vol. 46, p. 1108.

    Google Scholar 

  8. Kabalnov, A.S. and Shchukin, E.D., Adv. Colloid Interface Sci., 1992, vol. 38, p. 69.

    Article  CAS  Google Scholar 

  9. Taylor, P., Colloids Surf. A, 1995, vol. 99, p. 175.

    Article  CAS  Google Scholar 

  10. Taylor, P., Adv. Colloid Interface Sci., 1998, vol. 75, p. 107.

    Article  CAS  Google Scholar 

  11. Lifshits, I.M. and Slezov, V.V., Zh. Eksp. Teor. Fiz., 1958, vol. 35, p. 479.

    CAS  Google Scholar 

  12. Lifshitz, I.M. and Slyozov, V.V., J. Phys. Chem. Solids, 1961, vol. 19, p. 35.

    Article  Google Scholar 

  13. Wagner, C.Z., Z. Electrochem., 1961, vol. 65, p. 581.

    CAS  Google Scholar 

  14. De Smet, Y., Deriemaeker, L., Parloo, E., and Finsy, R., Langmuir, 1999, vol. 15, p. 2327.

    Article  Google Scholar 

  15. Welin-Berger, K. and Bergenstahl, B., Int. J. Pharm., 2000, vol. 200, p. 249.

    Article  CAS  Google Scholar 

  16. Ee, S.L., Duan, X., Liew, J., and Nguyen, Q.D., Chem. Eng. J., 2008, vol. 140, p. 626.

    Article  CAS  Google Scholar 

  17. Henry, J.V.L., Fryer, P.J., Frith, W.J., and Norton, I.T., J. Colloid Interface Sci., 2009, vol. 338, p. 201.

    Article  CAS  Google Scholar 

  18. Zeeb, B., Gibis, M., Fischer, L., and Weiss, J., J. Colloid Interface Sci., 2012, vol. 387, p. 65.

    Article  CAS  Google Scholar 

  19. Shchukin, E.D., Pertsov, A.I., and Amelina, E.A., Kolloidnaya khimiya (Colloid Chemistry), Moscow: Vysshaya Shkola, 2004.

    Google Scholar 

  20. Izquierdo, P., Esquena, J., Tadros, T.F., Dederen, J.C., Feng, J., Garsia-Celma, M.J., Azemar, N., and Solans, C., Langmuir, 2004, vol. 20, p. 6594.

    Article  CAS  Google Scholar 

  21. Tadros, T., Izquierdo, P., Esquena, J., and Solans, C., Adv. Colloid Interface Sci., 2004, vols. 108-109, p. 303.

    Article  CAS  Google Scholar 

  22. Izquierdo, P., Feng, J., Esquena, J., Tadros, T.F., Dederen, J.C., Garcia, M.J., Azemar, N., and Solans, C., J. Colloid Interface Sci., 2005, vol. 285, p. 388.

    Article  CAS  Google Scholar 

  23. Kabalnov, A.S., Pertzov, A.V., and Shchukin, E.D., J. Colloid Interface Sci., 1987, vol. 118, p. 590.

    Article  CAS  Google Scholar 

  24. Kahlweit, M., Z. Phys. Chem., 1963, vol. 36, p. 292.

    Article  CAS  Google Scholar 

  25. Sintering Processes. Materials Science Research, Kuczynski, G.C., Ed., New York: Plenum, 1979, vol. 13, p. 3.

  26. Pavlova-Verevkina, O.B., Aprosin, Yu.D., Novopashina, L.V., and Afonin, N.I., Kolloidn. Zh., 1987, vol. 49, p. 178.

    CAS  Google Scholar 

  27. Brailsford, A.D. and Wynblatt, P., Acta Metall., 1979, vol. 27, p. 489.

    Article  CAS  Google Scholar 

  28. Enomoto, Y., Tokuyama, M., and Kawasaki, K., Acta Metall., 1986, vol. 34, p. 2119.

    Article  CAS  Google Scholar 

  29. Weers, J.G. and Arlauskas, R.A., Langmuir, 1995, vol. 11, p. 474.

    Article  CAS  Google Scholar 

  30. Binks, B.P., Cho, W.-G., Fletcher, P.D.I., and Petsev, D.N., Langmuir, 2000, vol. 16, p. 1025.

    Article  CAS  Google Scholar 

  31. Buscall, R., Davis, S.S., and Potts, D.S., Colloid Polym. Sci., 1979, vol. 257, p. 636.

    Article  CAS  Google Scholar 

  32. Smith, A.L. and Davis, S.S., J. Pharm. Pharmacol., 1973, vol. 25, p. 117.

    Article  Google Scholar 

  33. Pertsov, A.V., Kabal’nov, A.S., and Shchukin, E.D., Kolloidn. Zh., 1984, vol. 46, p. 1172.

    CAS  Google Scholar 

  34. Kabal’nov, A.S., Pertsov, A.V., Aprosin, Yu.D., and Shchukin, E.D., Kolloidn. Zh., 1985, vol. 47, p. 1048.

    Google Scholar 

  35. Kabalnov, A.S., Pertzov, A.V., and Shchukin, E.D., Colloids Surf., 1987, vol. 24, p. 19.

    Article  CAS  Google Scholar 

  36. Kabal’nov, A.S., Aprosin, Yu.D., Pavlova-Verevkina, O.B., Pertsov, A.V., and Shchukin, E.D., Kolloidn. Zh., 1986, vol. 48, p. 27.

    Google Scholar 

  37. Sadtler, V.M., Imbert, P., and Dellacherie, E., J. Colloid Interface Sci., 2002, vol. 254, p. 355.

    Article  CAS  Google Scholar 

  38. Soma, J. and Papadopoulos, K.P., J. Colloid Interface Sci., 1996, vol. 181, p. 199.

    Google Scholar 

  39. Wooster, T., Golding, M., and Sanguansri, P., Langmuir, 2008, vol. 24, p. 12758.

    Article  CAS  Google Scholar 

  40. Li, Y., Le Maux, S., Xiao, H., and McClements, D.J., J. Agric. Food Chem., 2009, vol. 57, p. 9243.

    Article  CAS  Google Scholar 

  41. McClements, D.J., Henson, L., Popplewell, L.M., Decker, E.A., and Choi, S.J., J. Food Sci., 2012, vol. 71, p. 33. 42. Schönfeldt, N., Grenzfachenaktive Athylenoxid-Addukte, Stuttgart: Wissenschaftliche, 1976.

    Article  Google Scholar 

  42. Zadymova, N.M. and Ivanova, N.I., Colloid J., 2013, vol. 75, p. 159.

    Article  CAS  Google Scholar 

  43. Soderlind, E., Wollbradt, M., and von Corswant, C., Int. J. Pharm., 2003, vol. 252, p. 61.

    Article  CAS  Google Scholar 

  44. Gungor, S. and Ozsoy, A., Ther. Delivery, 2012, vol. 3, p. 1101.

    Article  Google Scholar 

  45. Willams, A.C. and Barry, B.W., Adv. Drug Delivery Rev., 2004, vol. 56, p. 603.

    Article  Google Scholar 

  46. Zadymova, N.M., Colloid J., 2013, vol. 75, p. 491.

    Article  CAS  Google Scholar 

  47. Ganem-Quintanar, A., Quintanar-Guerrero, D., and Buri, P., Drug Dev. Ind. Pharm., 2000, vol. 26, p. 809.

    Article  CAS  Google Scholar 

  48. Tilcock, C.P.S. and Fisher, D., Biochem. Biophys. Acta, 1982, vol. 685, p. 340.

    Article  CAS  Google Scholar 

  49. Industrial Guide, New Jersey: Noyes, 1990, p. 324.

  50. Zadymova, N.M. and Ivanova, N.I., Vestn. Mosk. Univ., Ser. 2: Khim., 2013, vol. 54, p. 112.

    CAS  Google Scholar 

  51. www.drugbank.ca/

  52. Yurzhenko, A.I., Zh. Obshch. Khim., 1946, vol. 16, p. 1171.

    CAS  Google Scholar 

  53. Zadymova, N.M. and Yampol’skaya, G.P., in Praktikum po kolloidnoi khimii: Uchebn. posobie dlya vuzov (Practical Course of Colloid Chemistry: A Manual for High School), Kulichikhin, V.G., Ed., Moscow: Vuzovskii Uchebnik: INFRA-M, 2012, p. 141.

  54. Handbook of Pharmaceutical Excipients, Rowe, R.C., Sheskey, P.J., and Quinn, M.E., Eds., London: Pharmaceutical, 2009.

  55. Sakai, T., Kamogawa, K., and Nishiyama, K., Langmuir, 2002, vol. 18, p. 1985.

    Article  CAS  Google Scholar 

  56. Handbook of Aqueous Solubility Data, Samuel, H. and Yalkowsky, Y.H., Eds., London: CRC, 2003, p. 1512.

  57. Zadymova, N.M. and Poteshnova, M.V., Abstracts of Papers, Vseross. nauchn. konf. “Struktura i dinamika molekulyarnykh system” (All-Russia Scientific Conf. “Structure and Dynamics of Molecular Systems”), Ioshkar-Ola-Ufa-Kazan, (Moscow, 2012), vol. 1, p. 178.

    Google Scholar 

  58. Capek, I., Adv. Colloid Interface Sci., 2004, vol. 107, p. 125.

    Article  CAS  Google Scholar 

  59. Weiss, J., Canceliere, C., and McClements, D.J., Langmuir, 2000, vol. 16, p. 6833.

    Article  CAS  Google Scholar 

  60. Kabalnov, A.S., Langmuir, 1994, vol. 10, p. 680.

    Article  CAS  Google Scholar 

  61. Zadymova, N.M. and Yampol’skaya, G.P., in Praktikum po kolloidnoi khimii: Ucheb. posobie dlya vuzov (Practical Course of Colloid Chemistry: A Manual for High School), Kulichikhin, V.G., Ed., Moscow: Vuzovskii Uchebnik: INFRA-M, 2012, p. 35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.M. Zadymova, G.A. Arshakyan, 2014, published in Kolloidnyi Zhurnal, 2014, Vol. 76, No. 1, pp. 28–41.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zadymova, N.M., Arshakyan, G.A. Inhibition of Ostwald ripening in heptane/water miniemulsions. Colloid J 76, 25–37 (2014). https://doi.org/10.1134/S1061933X14010165

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X14010165

Keywords

Navigation