Skip to main content
Log in

Clusterization of water molecules on crystalline β-AgI surface. Computer experiment

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The free energy and the work of formation of the clusters of water molecules from the vapor on the ideal continuous crystalline surface of silver iodide at 260 and 300 K are calculated with the Monte Carlo method for a bicanonical statistical ensemble. Long-range electrostatic and polarization interactions with the surface are calculated with the two-dimensional Ewald method. It is shown that the adsorption of water molecules is accompanied by their intense clusterization. At negative Celsius temperatures, hydrogen-bonded molecules form the chains on the crystal surface. The closure of chains into rings begins with the clusters containing five molecules. As cluster sizes increase, the competition between five-and six-membered cycles is ended in favor of six-membered cycles. The substrate field stimulates the formation of six-membered cycles. Entropic effects strongly level the influence of clusterization on the probability of adsorption. Within the size interval 1 < N < 15, there are two clusterization barriers whose heights are negligible and equal to about 2k B T. The presence of a substrate lowers the vapor pressure of clusterization by more than an order of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nikandrov, V.Ya., Iskusstvennye vozdeistviya na oblaka i tumany (Artificial Action on Clouds and Mists), Leningrad: Gidrometeoizdat, 1959.

    Google Scholar 

  2. Leonov, M.P. and Perelet, G.I., Aktivnye vozdeistviya na oblaka v kholodnoe polugodie (Active Action on Clouds in Cold Half Year), Leningrad: Gidrometeoizdat, 1967.

    Google Scholar 

  3. Prikhot’ko, G.F., Iskusstvennye osadki iz konvektivnykh oblakov (Artificial Precipitation from Convective Clouds), Leningrad: Gidrometeoizdat, 1968.

    Google Scholar 

  4. Arnett, D., Weather Modification by Cloud Seeding, New York: Academic, 1980.

    Google Scholar 

  5. Zamalin, V.M., Norman, G.E., and Filinov, V.S., Metod Monte-Karlo v statisticheskoi termodinamike (The Monte Carlo Method in Statistical Thermodynamics), Moscow: Nauka, 1977.

    Google Scholar 

  6. Ward, R.C., Hale, B.N., and Terrazas, S., J. Chem. Phys., 1983, vol. 78, no. 1, p. 420.

    Article  CAS  Google Scholar 

  7. Zapadinsky, E.L. and Kulmala, M., J. Chem. Phys., 1995, vol. 102, no. 17, p. 6858.

    Article  CAS  Google Scholar 

  8. Hale, B.N. and Dimattio, D.J., in Nucleation and Atmospheric Aerosols, Kulmala, M. and Wagner, P., Eds., New York: Pergamon, 1996, p. 349.

    Google Scholar 

  9. Shevkunov, S.V., Martsinovskii, A.A., and Vorontsov-Vel’yaminov, P.N., Teplofiz. Vys. Temp., 1988, vol. 26, no. 2, p. 246.

    CAS  Google Scholar 

  10. Shevkunov, S.V., Martsmovski, A.A., and Vorontsov-Velyaminov, P.N., Mol. Simul., 1990, vol. 5, p. 119.

    Google Scholar 

  11. Shevkunov, S.V. and Vegiri, A., J. Chem. Phys., 1999, vol. 111, no. 20, p. 9303.

    Article  CAS  Google Scholar 

  12. Shevkunov, S.V., Kolloidn. Zh., 2000, vol. 62, no. 4, p. 569.

    Google Scholar 

  13. Shevkunov, S.V., Zh. Eksp. Teor. Fiz., 2001, vol. 119, no. 3, p. 485.

    Google Scholar 

  14. Shevkunov, S.V. and Vegiri, A., Mol. Phys., 2000, vol. 98, no. 3, p. 149.

    Article  CAS  Google Scholar 

  15. Vegiri, A. and Shevkunov, S.V., J. Chem. Phys., 2000, vol. 113, no. 19, p. 8521.

    Article  CAS  Google Scholar 

  16. Shevkunov, S.V., Dokl. Ross. Akad. Nauk, 2005, vol. 402, no. 1, p. 41.

    Google Scholar 

  17. Shevkunov, S.V., Elektrokhimiya, 2002, vol. 38, no. 3, p. 340.

    Google Scholar 

  18. Shevkunov, S.V., Zh. Fiz. Khim., 2002, vol. 76, no. 4, p. 583.

    CAS  Google Scholar 

  19. Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., J. Mol. Struct. (THEOCHEM), 2003, vol. 623, nos. 1–3, p. 221.

    Article  CAS  Google Scholar 

  20. Shevkunov, S.V., Lukyanov, S.I., and Millot, Cl., Chem. Phys., 2005, vol. 310, nos. 1–3, p. 97.

    Article  CAS  Google Scholar 

  21. Shevkunov, S.V., Zh. Fiz. Khim., 2002, vol. 76, no. 4, p. 583.

    CAS  Google Scholar 

  22. Shevkunov, S.V., Zh. Obshch. Khim., 2005, no. 10, p. 1709.

  23. Shevkunov, S.V., Kolloidn. Zh., 2002, vol. 64, no. 2, p. 270.

    Google Scholar 

  24. Shevkunov, S.V., Zh. Eksp. Teor. Fiz., 2005, vol. 127, no. 3, p. 696.

    Google Scholar 

  25. Landau, L.D., and Lifshitz, E.M., Kvantovaya mekhanika (Quantum Mechanics), Moscow: Nauka, 1974.

    Google Scholar 

  26. Weyl, H., The Theory of Groups and Quantum Mechanics, Dover, 1931.

  27. Soetens, J.C., Millot, C., Hoang, P.N.M., and Girardet, C., Surf. Sci., 1998, vol. 419, p. 48.

    Article  CAS  Google Scholar 

  28. Sandre, E. and Pasturel, A., Mol. Simul., 1997, vol. 20, p. 63.

    CAS  Google Scholar 

  29. Izvekov, S. and Voth, G.A., J. Chem. Phys., 2002, vol. 116, no. 23, p. 10372.

    Article  CAS  Google Scholar 

  30. Milet, A., Korona, T., Moszynski, R., and Kochanski, E., J. Chem. Phys., 1999, vol. 111, no. 17, p. 7727.

    Article  CAS  Google Scholar 

  31. Sorenson, J.M., Hura, G., Glaeser, R.M., and Head-Gordon, T., J. Chem. Phys., 2000, vol. 113, no. 20, p. 9149.

    Article  CAS  Google Scholar 

  32. Chialvo, A.A., Yezdimer, E., Driesner, T., et al., Chem. Phys., 2000, vol. 258, no. 2, p. 109.

    Article  CAS  Google Scholar 

  33. Guillot, B. and Guissani, Y., J. Chem. Phys., 2001, vol. 114, no. 15, p. 6720.

    Article  CAS  Google Scholar 

  34. Burnham, Ch.J. and Xantheas, S.S., J. Chem. Phys., 2002, vol. 116, no. 4, p. 1500.

    Article  CAS  Google Scholar 

  35. Lisal, M., Kolafa, J., and Nezbeda, I., J. Chem. Phys., 2002, vol. 117, no. 19, p. 8892.

    Article  CAS  Google Scholar 

  36. Mahoney, M.W. and Jorgensen, W.L., J. Chem. Phys., 2000, vol. 112, no. 20, p. 8910.

    Article  CAS  Google Scholar 

  37. Stillinger, F.H. and Rahman, A., J. Chem. Phys., 1974, vol. 60, no. 4, p. 1545.

    Article  CAS  Google Scholar 

  38. Wyckoff, R.W.G., Crystal Structures, New York: Wiley, 1965.

    Google Scholar 

  39. Spravochnik khimika (Chemist’s Handbook), Leningrad: Khimiya, 1971.

  40. Yeh In-Chu and Berkowitz, M.L., J. Chem. Phys., 1999, vol. 111, no. 7, p. 3155.

    Article  CAS  Google Scholar 

  41. Shevkunov, S.V., Dokl. Ross. Akad. Nauk, 2001, vol. 376, no. 3, p. 318.

    CAS  Google Scholar 

  42. Shevkunov, S.V., Kolloidn. Zh., 2001, vol. 63, no. 4, p. 560.

    Google Scholar 

  43. Shevkunov, S.V. and Vegiri, A., J. Mol. Struct. (THEOCHEM), 2002, vol. 593, nos. 1–3, p. 19.

    Article  CAS  Google Scholar 

  44. Fizicheskie velichiny (Physical Quantities), Grigor’ev, I.S. and Meilikhov, E.Z., Eds., Moscow: Energoizdat, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.V. Shevkunov, 2006, published in Kolloidnyi Zhurnal, 2006, Vol. 68, No. 5, pp. 691–703.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shevkunov, S.V. Clusterization of water molecules on crystalline β-AgI surface. Computer experiment. Colloid J 68, 632–643 (2006). https://doi.org/10.1134/S1061933X06050164

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X06050164

Keywords

Navigation