Skip to main content
Log in

Water-vapor clustering on the surface of β-AgI crystal in the field of defects with a disordered structure

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The Monte Carlo method has been employed to simulate the nucleation of condensed water phase from vapor at 260 K on a crystalline silver-iodide surface containing a defect in the form of a nanoscopic spot with a random distribution of ions. The free energy and work of formation of a nucleus have been calculated in the bicanonical ensemble at the molecular level as functions of nucleus size; computer images and spatial correlation functions of molecules have been obtained. The presence of a defect with a disordered (amorphous) structure, on the one hand, entails local destructions of a monomolecular film, but, on the other hand, shifts the onset of the adsorption process toward lower vapor pressures by several orders of magnitude. Under the conditions of a growing condensate film, the defect leads to its thermodynamic stabilization and a decrease in the barrier of the formation of subsequent layers, thereby weakening the known effect of the hydrophobicity of monomolecular films on crystalline surfaces with hexagonal structures. The factors that predetermine the abnormally high efficiency of silver-iodide particles as stimulators for atmospheric-moisture nucleation at negative Celsius temperatures seem to be the presence of extended defects on the surface of aerosol particles in combination with the hexagonal structure of their crystal lattice, the optimum magnitude of direct interactions between water molecules with ions of the crystal surface layer, and the collective domain-formation effects that result from a relatively high polarizability of iodine ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Volkovitskii, O.A., Kim, N.S., and Shpodkin, A.B., in Voprosy fiziki oblakov (Problems of the Cloud Physics), Leningrad: Gidrometeoizdat, 1987, p. 103.

    Google Scholar 

  2. Sadtchenko, V., Ewing, G.E., Nutt, D.R., and Stone, A.J., Langmuir, 2002, vol. 18, p. 4632.

    Article  Google Scholar 

  3. Conrad, P., Ewing, G.E., Karlinsey, R.L., and Sadtchenko, V., J. Chem. Phys., 2005, vol. 122, p. 064709.

    Article  CAS  Google Scholar 

  4. Polovina, I.P., Rasseyanie pereokhlazhdennykh sloistoobraznykh oblakov i tumanov (Dispersion of Supercooled Stratus Clouds and Fogs), Leningrad: Gidrometeoizdat, 1980.

    Google Scholar 

  5. Nikandrov, V.Ya., Iskusstvennye vozdeistviya na oblaka i tumany (Artificial Influence on Clouds and Fogs), Leningrad: Gidrometeoizdat, 1959.

    Google Scholar 

  6. Belyaev, V.P., Zatsepina, L.P., Zimin, B.I., Zontov, L.B., Pozdeev, V.N., Seregin, Yu.A., and El’mesov, M.S., Tr. Tsentr. Aerolog. Observatorii, 1991, no. 175, p. 82.

    Google Scholar 

  7. Bakhsoliani, M.G., Bessonov, V.A., Grishin, Yu.P., Iordanskii, M.A., Kartsivadze, A.I., Nesmeyanov, P.A., Salukvadze, T.G., Simonov, A.Ya., Sutugin, A.G., and Tsitskishvili, M.S., Abstracts of Papers, Vsesoyuz. seminar “Aktivnye vozdeistviya na gradovye protsessy i perspektivy usovershenstvovaniya l’doobrazuyushchikh reagentov dlya praktiki aktivnykh vozdeistvii” (All-Union Workshop “Active Influence on Hail Processes and the Potential of Refining Ice-Forming Reagents for Practice of Active Influence”), Moscow, 1991, p. 136.

    Google Scholar 

  8. Smith, P.L., Johnson, L.R., Priegnitz, D.L., Boe, B.A., and Mielke, P.W., J. Appl. Meteorol., 1997, vol. 36, p. 463.

    Article  Google Scholar 

  9. Timofeev, N.E., Madyakin, F.P., Arutyunyan, A.S., and Salin, V.N., Abstracts of Papers, Vsesoyuz. seminar “Aktivnye vozdeistviya na gradovye protsessy i perspektivy usovershenstvovaniya l’doobrazuyushchikh reagentov dlya praktiki aktivnykh vozdeistvii” (All-Union Workshop “Active Influence on Hail Processes and the Potential of Refining Ice-Forming Reagents for Practice of Active Influence”), Moscow, 1991, p. 220.

    Google Scholar 

  10. Aksenov, M.Ya., Vernidub, I.I., Gaivoronskii, I.I., Kartsivadze, A.I., Plaude, N.O, Solov’ev, A.D., and Shimshintsev, V.V., Tr. Tsentr. Aerolog. Observatorii, 1962, no. 44, p. 63.

    Google Scholar 

  11. Plaude, N.O., Tr. Tsentr. Aerolog. Observatorii, 1967, no. 80, p. 89.

    Google Scholar 

  12. Billman, C.R., Wang, Y., and Cheng, H.-P., J. Chem. Phys., 2016, vol. 144, p. 064701.

    Article  CAS  Google Scholar 

  13. Wang, Y. and Cheng, H.-P., J. Phys. Chem. C, 2013, vol. 117, p. 2106.

    Article  CAS  Google Scholar 

  14. Farjamnia, A. and Jackson, B., J. Chem. Phys., 2015, vol. 142, p. 234705.

    Article  CAS  Google Scholar 

  15. Pozzo, M., Carlini, G., Rosei, R., and Alfe, D., J. Chem. Phys., 2007, vol. 126, p. 164706.

    Article  CAS  Google Scholar 

  16. Phatak, A.A., Delgass, W.N., Ribeiro, F.H., and Schneider, W.F., J. Phys. Chem. C, 2009, vol. 113, p. 7269.

    Article  CAS  Google Scholar 

  17. Huang, S.-C., Lin, C.-H., and Wang, J.-H., J. Phys. Chem. C, 2010, vol. 114, p. 9826.

    Article  CAS  Google Scholar 

  18. Troullier, N. and Martins, J.L., Phys. Rev. B, 1991, vol. 43, p. 1993.

    Article  CAS  Google Scholar 

  19. Blöchl, P.E., Phys. Rev. B, 1994, vol. 50, p. 17953.

    Article  Google Scholar 

  20. Kresse, G. and Joubert, D., Phys. Rev. B, 1999, vol. 59, p. 1758.

    Article  CAS  Google Scholar 

  21. Lupi, L., Kastelowitz, N., and Molinero, V., J. Chem. Phys., 2014, vol. 141, p. 18C508.

    Article  CAS  Google Scholar 

  22. Lu, Q., Kim, J., Farrell, J.D., Wales, D.J., and Straub, J.E., J. Chem. Phys., 2014, vol. 141, p. 18C525.

    Google Scholar 

  23. Reinhardt, A. and Doye, J.P.K., J. Chem. Phys., 2014, vol. 141, p. 084501.

    Article  CAS  Google Scholar 

  24. Pertsin, A. and Grunze, M., J. Chem. Phys., 2012, vol. 137, p. 054701.

    Article  CAS  Google Scholar 

  25. Pusztai, L., Pizio, O., and Sokolowski, S., J. Chem. Phys., 2008, vol. 129, p. 184103.

    Article  CAS  Google Scholar 

  26. Amira, S., Spangberg, D., and Hermansson, K., Chem. Phys., 2004, vol. 303, p. 327.

    Article  CAS  Google Scholar 

  27. Malaspina, D.C., Bermúdez, A.J., Lorenzo, D., Pereyra, R.G., Szleifer, I., and Carignano, M.A., J. Chem. Phys., 2013, vol. 139, p. 024506.

    Article  CAS  Google Scholar 

  28. Yigzawe, T.M. and Sadus, R.J., J. Chem. Phys., 2013, vol. 138, p. 044503.

    Article  CAS  Google Scholar 

  29. Conde, M.M., Gonzalez, M.A., Abascal, J.L.F., and Vega, C., J. Chem. Phys., 2013, vol. 139, p. 154505.

    Article  CAS  Google Scholar 

  30. Lussetti, E., Pastore, G., and Smargiassi, E., Chem. Phys. Lett., 2013, vol. 381, p. 287.

    Article  CAS  Google Scholar 

  31. Toth, G., J. Chem. Phys., 1996, vol. 105, p. 5518.

    Article  CAS  Google Scholar 

  32. Soler, J.M., Artacho, E., Gale, J.D., Garcia, J.J.A., Ordejon, P., and Sanchez-Portal, D., J. Phys.: Condens. Matter, 2002, vol. 14, p. 2745.

    CAS  Google Scholar 

  33. Wand, J., Roman-Perez, G., Soler, J., Artacho, E., and Fernandez-Serra, M.-V., J. Chem. Phys., 2011, vol. 34, p. 024516.

    Google Scholar 

  34. Corsetti, F., Artacho, E., Soler, J.M., Alexandre, S.S., and Fernandez-Serra, M.V., J. Chem. Phys., 2013, vol. 139, p. 194502.

    Article  CAS  Google Scholar 

  35. Pedroza, L.S., Poissier, A., and Fernandez-Serra, M.-V., J. Chem. Phys., 2015, vol. 142, p. 034706.

    Article  CAS  Google Scholar 

  36. Lupi, L., Hudait, A., and Molinero, V., J. Am. Chem. Soc., 2014, vol. 136, p. 3156.

    Article  CAS  Google Scholar 

  37. Lupi, L. and Molinero, V., J. Phys. Chem. A, 2014, vol. 118, p. 7330.

    Article  CAS  Google Scholar 

  38. Cox, S.J., Raza, Z., Kathmann, S.M., Slater, B., and Michaelides, A., Faraday Discuss. Chem. Soc., 2013, vol. 167, p. 389.

    Article  CAS  Google Scholar 

  39. Croteau, T., Bertram, A.K., and Patey, G.N., J. Phys. Chem. A, 2008, vol. 112, p. 10708.

    Article  CAS  Google Scholar 

  40. Cox, S.J., Kathmann, S.M., Slater, B., and Michaelides, A., J. Chem. Phys., 2015, vol. 142, p. 184704.

    Article  CAS  Google Scholar 

  41. Chen, S., Wang, J., Ma, T., and Chen, D., J. Chem. Phys., 2014, vol. 140, p. 114704.

    Article  CAS  Google Scholar 

  42. Fraux, G. and Doye, J.P.K., J. Chem. Phys., 2014, vol. 141, p. 216101.

    Article  CAS  Google Scholar 

  43. Shevkunov, S.V., Russ. J. Gen. Chem., 2005, vol. 75, p. 1632.

    Article  CAS  Google Scholar 

  44. Shevkunov, S.V., Russ. J. Phys. Chem. A, 2006, vol. 80, p. 769.

    Article  CAS  Google Scholar 

  45. Shevkunov, S.V., Colloid J., 2006, vol. 68, p. 357.

    Article  CAS  Google Scholar 

  46. Shevkunov, S.V., Colloid J., 2006, vol. 68, p. 632.

    Article  CAS  Google Scholar 

  47. Petersen, M.K., Kumar, R., White, H.S., and Voth, G.A., J. Phys. Chem. C, 2012, vol. 116, p. 4903.

    Article  CAS  Google Scholar 

  48. Duan, S., Xu, X., Tian, Z.-Q., and Luo, Y., Phys. Rev. B, 2012, vol. 86, p. 045450.

    Article  CAS  Google Scholar 

  49. Izvekov, S., Mazzolo, A., Vanopdorp, K., and Voth, G.A., J. Chem. Phys., 2001, vol. 114, p. 3248.

    Article  CAS  Google Scholar 

  50. Izvekov, S. and Voth, G.A., J. Chem. Phys., 2001, vol. 115, p. 7196.

    Article  CAS  Google Scholar 

  51. Nadler, R. and Sanz, J.F., J. Chem. Phys., 2012, vol. 137, p. 114709.

    Article  CAS  Google Scholar 

  52. Argyris, D., Tummala, N.R., and Striolo, A., J. Phys. Chem. C, 2008, vol. 112, p. 13587.

    Article  CAS  Google Scholar 

  53. Cicero, G., Calzolari, A., Corni, S., and Catellani, A., J. Phys. Chem. Lett., 2011, vol. 2, p. 2582.

    Article  CAS  Google Scholar 

  54. Werder, T., Walther, J.H., Jaffe, R.L., Halicioglu, T., and Koumoutsakos, P., J. Phys. Chem. B, 2003, vol. 107, p. 1345.

    Article  CAS  Google Scholar 

  55. Jaffe, R.L., Gonnet, P., Werder, T., Walther, J.H., and Koumoutsakos, P., Mol. Simul., 2004, vol. 30, p. 205.

    Article  CAS  Google Scholar 

  56. Ramírez, R., Singh, J.K., Müller-Plathe, F., and Böhm, M.C., J. Chem. Phys., 2014, vol. 141, p. 204701.

    Article  CAS  Google Scholar 

  57. Ho, T.A., Argyris, D., Papavassiliou, D.V., Striolo, A., Lee, L.L., and Cole, D.R., Mol. Simul., 2011, vol. 37, p. 172.

    Article  CAS  Google Scholar 

  58. Xu, W., Lan, Z., Peng, B.L., Wen, R.F., and Ma, X.H., J. Chem. Phys., 2015, vol. 142, p. 054701.

    Article  CAS  Google Scholar 

  59. Cox, S.J., Kathmann, S.M., Slater, B., and Michaelides, A., J. Chem. Phys., 2015, vol. 142, p. 184705.

    Article  CAS  Google Scholar 

  60. Shevkunov, S.V., Russ. J. Phys. Chem. A, 2005, vol. 79, p. 1653.

    CAS  Google Scholar 

  61. Shevkunov, S.V., Colloid J., 2006, vol. 68, p. 370.

    Article  CAS  Google Scholar 

  62. Shevkunov, S.V., Colloid J., 2014, vol. 76, p. 490.

    Article  CAS  Google Scholar 

  63. Shevkunov, S.V., Russ. J. Phys. Chem. A, 2014, vol. 88, p. 1744.

    Article  CAS  Google Scholar 

  64. Shevkunov, S.V., Russ. J. Phys. Chem. A, 2014, vol. 88, p. 2165.

    Article  CAS  Google Scholar 

  65. Shevkunov, S.V., Russ. J. Electrochem., 2014, vol. 50, p. 1118.

    Article  CAS  Google Scholar 

  66. Shevkunov, S.V., Colloid J., 2016, vol. 78, p. 121.

    Article  CAS  Google Scholar 

  67. Shevkunov, S.V., Colloid J., 2016, vol. 78, p. 137.

    Article  CAS  Google Scholar 

  68. Shevkunov, S.V., Russ. J. Phys. Chem. A, 2016, vol. 90, p. 1015.

    Article  CAS  Google Scholar 

  69. Shevkunov, S.V., Colloid J., 2016, vol. 78, p. 242.

    Article  CAS  Google Scholar 

  70. Shevkunov, S.V., Colloid J., 2016, vol. 78, p. 257.

    Article  CAS  Google Scholar 

  71. Shevkunov, S.V., Russ. J. Electrochem., 2016, vol. 52, p. 397.

    Article  CAS  Google Scholar 

  72. Shevkunov, S.V., J. Struct. Chem., 2016, vol. 57, p. 104.

    Article  CAS  Google Scholar 

  73. Shevkunov, S.V., Russ. J. Phys. Chem. A, 2016, vol. 90, p. 1879.

    Article  CAS  Google Scholar 

  74. Shevkunov, S.V., Russ. J. Electrochem., 2016, vol. 52, p. 910.

    Article  CAS  Google Scholar 

  75. Shevkunov, S.V., Colloid J., 2016, vol. 78, p. 542.

    Article  CAS  Google Scholar 

  76. Shevkunov, S.V., Russ. J. Electrochem., 2016, vol. 52, p. 1064.

    Article  CAS  Google Scholar 

  77. Shevkunov, S.V., Russ. J. Phys. Chem. A, 2017, vol. 91, p. 336.

    Article  CAS  Google Scholar 

  78. Hirvi, J.T. and Pakkanen, T.A., Langmuir, 2007, vol. 23, p. 7724.

    Article  CAS  Google Scholar 

  79. Batista, L., Belyaev, V.P., Val’des, M., Danelyan, B.G., Zatsepina, L.P., Zimin, B.I., Koloskov, B.P., Martines, D., Peres, K., and Seregin, Yu.A., Tr. Tsentr. Aerolog. Observatorii, 1992, no. 177, p. 54.

    Google Scholar 

  80. Kim, N.S., Tr. Tsentr. Aerolog. Observatorii, 1980, no. 142, p. 89.

    CAS  Google Scholar 

  81. Singh, J.K. and Müller-Plathe, F., Appl. Phys. Lett., 2014, vol. 104, p. 021603.

    Article  CAS  Google Scholar 

  82. Nistor, R.A., Markland, T.E., and Berne, B.J., J. Phys. Chem. B, 2014, vol. 118, p. 752.

    Article  CAS  Google Scholar 

  83. Malijevský, A., J. Chem. Phys., 2014, vol. 141, p. 184703.

    Article  CAS  Google Scholar 

  84. Zhang, X.-X., Chen, M., and Fu, M., J. Chem. Phys., 2014, vol. 141, p. 124709.

    Article  CAS  Google Scholar 

  85. Page, A.J. and Sear, R.P., Phys. Rev. Lett., 2006, vol. 97, p. 065701.

    Article  CAS  Google Scholar 

  86. Page, A.J. and Sear, R.P., J. Am. Chem. Soc., 2009, vol. 131, p. 17550.

    Article  CAS  Google Scholar 

  87. Hedges, L.O. and Whitelam, S., Soft Matter, 2012, vol. 8, p. 8624.

    Article  CAS  Google Scholar 

  88. Kolb, M.J., Calle-Vallejo, F., Juurlink, L.B.F., and Koper, M.T.M., J. Chem. Phys., 2014, vol. 140, p. 134708.

    Article  CAS  Google Scholar 

  89. Seenivasan, H. and Tiwari, A.K., J. Chem. Phys., 2014, vol. 140, p. 174704.

    Article  CAS  Google Scholar 

  90. Shevkunov, S.V., Colloid J., 2005, vol. 67, p. 497.

    Article  CAS  Google Scholar 

  91. Shevkunov, S.V., Zh. Eksp. Teor. Fiz., 2009, vol. 135, p. 510.

    Google Scholar 

  92. Shevkunov, S.V., Lukyanov, S.I., Leyssale, J.-M., and Millot, C., Chem. Phys., 2005, vol. 310, p. 97.

    Article  CAS  Google Scholar 

  93. Shevkunov, S.V., Colloid J., 2005, vol. 67, p. 509.

    Article  CAS  Google Scholar 

  94. Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., Chem. Phys., 2007, vol. 332, p. 188.

    Article  CAS  Google Scholar 

  95. Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., Fluid Phase Equilib., 2005, vol. 233, p. 34.

    Article  CAS  Google Scholar 

  96. Shevkunov, S.V., Russ. J. Phys. Chem. A, 2011, vol. 85, p. 1584.

    Article  CAS  Google Scholar 

  97. Shevkunov, S.V., Russ. J. Electrochem., 2014, vol. 50, p. 1127.

    Article  CAS  Google Scholar 

  98. Kittel, C., Thermal Physics, New York: Wiley, 1969.

    Google Scholar 

  99. Hill, T.L., Thermodynamics of Small Systems, New York: Benjamin, 1963.

    Google Scholar 

  100. Shevkunov, S.V., Zh. Eksp. Teor. Fiz., 2008, vol. 134, p. 1130.

    Google Scholar 

  101. Shevkunov, S.V., Colloid J., 2014, vol. 76, p. 221.

    Article  CAS  Google Scholar 

  102. Ballenegger, V., J. Chem. Phys., 2014, vol. 140, p. 161102.

    Article  CAS  Google Scholar 

  103. Smith, E.R., J. Chem. Phys., 2008, vol. 128, p. 174104.

    Article  CAS  Google Scholar 

  104. Zamalin, V.M., Norman, G.E., and Filinov, V.S., Metod Monte-Karlo v statisticheskoi termodinamike (Monte Carlo Method in Statistical Thermodynamics), Moscow: Nauka, 1977.

    Google Scholar 

  105. Giovambattista, N., Rossky, P.J., and Debenedetti, P.G., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2006, vol. 73, p. 041604.

    Article  CAS  Google Scholar 

  106. Giovambattista, N., Rossky, P.J., and Debenedetti, P.G., J. Phys. Chem. B, 2009, vol. 113, p. 13723.

    Article  CAS  Google Scholar 

  107. Kastelowitz, N., Johnston, J.C., and Molinero, V., J. Chem. Phys., 2010, vol. 132, p. 124511.

    Article  CAS  Google Scholar 

  108. Johnston, J.C., Kastelowitz, N., and Molinero, V., J. Chem. Phys., 2010, vol. 133, p. 154516.

    Article  CAS  Google Scholar 

  109. Kirov, M.V., J. Stat. Phys., 2012, vol. 149, p. 865.

    Article  CAS  Google Scholar 

  110. Kirov, M.V., Phys. A (Amsterdam), 2013, vol. 392, p. 680.

    Article  CAS  Google Scholar 

  111. Anick, D.J., J. Phys. Chem. A, 2014, vol. 118, p. 7498.

    Article  CAS  Google Scholar 

  112. Slovák, J., Koga, K., Tanaka, H., and Zeng, X., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1999, vol. 60, p. 833.

    Article  Google Scholar 

  113. Koga, K., Tanaka, H., and Zeng, X., Nature (London), 2000, vol. 408, p. 564.

    Article  CAS  Google Scholar 

  114. Geim, A.K., Science (Washington, D. C.), 2009, vol. 324, p. 1530.

    Article  CAS  Google Scholar 

  115. Wang, C., Lu, H., Wang, Z., Xiu, P., Zhou, B., Zuo, G., Wan, R., Hu, J., and Fang, H., Phys. Rev. Lett., 2009, vol. 103, p. 137801.

    Article  CAS  Google Scholar 

  116. Hu, X.L. and Michaelides, A., Surf. Sci., 2008, vol. 602, p. 960.

    Article  CAS  Google Scholar 

  117. Kimmel, G.A., Petrik, N.G., Dohnalek, Z., and Kay, B.D., Phys. Rev. Lett., 2005, vol. 95, p. 166102.

    Article  CAS  Google Scholar 

  118. Shevkunov, S.V., Dokl. Akad. Nauk, 2011, vol. 438, p. 752.

    Google Scholar 

  119. Shevkunov, S.V., Colloid J., 2012, vol. 74, p. 589.

    Article  CAS  Google Scholar 

  120. Shevkunov, S.V., Colloid J., 2012, vol. 74, p. 608.

    Article  CAS  Google Scholar 

  121. Shevkunov, S.V., Russ. J. Phys. Chem. A, 2013, vol. 87, p. 1654.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Shevkunov.

Additional information

Original Russian Text © S.V. Shevkunov, 2017, published in Kolloidnyi Zhurnal, 2017, Vol. 79, No. 5, pp. 644–660.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevkunov, S.V. Water-vapor clustering on the surface of β-AgI crystal in the field of defects with a disordered structure. Colloid J 79, 685–700 (2017). https://doi.org/10.1134/S1061933X1705012X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X1705012X

Navigation