Skip to main content
Log in

Properties of Chebyshev Generalized Rational Fractions in \(L_1\)

  • Research Articles
  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

It is shown that, under a natural constraint, a set of generalized rational fractions in an atomless \(L_1\)-space is a Chebyshev set with continuous metric projection only if this set is convex. Hence this set is not a uniqueness set in \(L_1\), and therefore, some \(x\in L_1\) has at least two nearest points in this set. As a result, it is shown that the set of classical algebraic fractions \( \mathscr{R} _{n,m}\) (consisting of ratios of algebraic polynomials of degree \(\le n\), \(\le m\), respectively) is not a Chebyshev set in \( L_1[a,b]\), and therefore, there exists a function \(x\in L_1[a,b]\) with at least two nearest points in \( \mathscr{R} _{n,m}\). This result solves one long-standing problem in rational approximation.

DOI 10.1134/S1061920822040161

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here “a.e.” stands for “almost everywhere”.

  2. Given an arbitrary nontrivial Abelian group, we say that a nonempty topological space is acyclic if all its reduced Čech homology groups over \(A\). For more details on acyclic sets, see, for example, [2, Sec. 6].

References

  1. V. S. Balaganskii and L. P. Vlasov, “The problem of convexity of Chebyshev Sets”, Russian Math. Surveys, 51:6 (1996), 1127–1190.

    Article  ADS  Google Scholar 

  2. A. R. Alimov and I. G. Tsar’kov, “Connectedness and Solarity in Problems of Best and Near-Best Approximation”, Russian Math. Surveys, 71:1 (2016), 1–77.

    Article  ADS  MATH  Google Scholar 

  3. A. R. Alimov, “Solarity of Chebyshev Sets in Dual Spaces and Uniquely Remotal Sets”, Lobachevskii J. Math., 42:4 (2021), 785–790.

    Article  MATH  Google Scholar 

  4. I. G. Tsar’kov, “Singular Sets of Surfaces”, Russ. J. Math. Phys., 24:2 (2017), 263–271.

    Article  MATH  Google Scholar 

  5. I. G. Tsar’kov, “Geometry of the Singular Set of Hypersurfaces and the Eikonal Equation”, Russ. J. Math. Phys., 29:2 (2022), 81–90.

    Article  Google Scholar 

  6. A. R. Alimov and I. G. Tsar’kov, Geometric Approximation Theory, Springer, Cham, 2021.

    Book  MATH  Google Scholar 

  7. A. R. Alimov and I. G. Tsar’kov, “Smoothness of Subspace Sections of the Unit Balls of \(C (Q)\) and \(L^1\)”, J. Approx. Theory, 265 (2021), 105552–8.

    Article  MATH  Google Scholar 

  8. A. R. Alimov and I. G. Tsar’kov, “Solarcity and Proximinality in Generalized Rational Approximation in Spaces \(C(Q)\) and \(L^p\)”, Doklady Akademii Nauk,.

    Google Scholar 

  9. H. Berens, Vorlesung über Nichtlineare Approximation, Universität Erlangen–Nürnberg, 1977/78.

    Google Scholar 

  10. B. Boehm, “Existence of Best Rational Tchebycheff Approximations”, Pacific J. Math., 15 (1965), 19–28.

    Article  MATH  Google Scholar 

  11. F. Deutsch, “Existence of Best Approximations”, J. Approx. Theory, 28 (1980), 132–154.

    Article  MATH  Google Scholar 

  12. G. Köthe, Topological Vector Spaces, I, Grundlehren der Mathematischen Wissenschaften Bd. 159, Springer, Berlin, 1969.

    MATH  Google Scholar 

  13. G. Meinardus and D. Schwedt, “Nicht-lineare Approximationen”, Arch. Ration. Mech. Anal., 17:4 (1964), 297–326.

    Article  MATH  Google Scholar 

  14. R. D. Millán, V. Peiris, N. Sukhorukova, and J. Ugon, “Multivariate Approximation by Polynomial and Generalised Rational Functions”, arXiv preprint arXiv:2101.11786., (2021).

    ADS  MATH  Google Scholar 

  15. B. S. Mityagin, “The Zero Set of a Real Analytic Function”, Mat. Zametki, 107:3 (2020), 529–530.

    MATH  Google Scholar 

  16. V. Peiris, N. Sharon, N. Sukhorukova, and J. Ugon, “Generalised Rational Approximation and Its Application to Improve Deep Learning Classifiers”, Appl. Math. Comp., 389 (2021), 125560.

    Article  MATH  Google Scholar 

  17. P. P. Petrushev and V. A. Popov, Rational Approximation of Real Functions, Cambridge University Press, 1987.

    MATH  Google Scholar 

  18. A. Pinkus, “On a Problem of G. G. Lorentz”, J. Approx. Theory, 103:1 (2000), 29–54.

    Article  MATH  Google Scholar 

  19. I. G. Tsar’kov, “Properties of Suns in the Spaces \(L^1\) and \(C(Q)\)”, Russ. J. Math. Phys., 28 (2021), 398–405.

    Article  MATH  Google Scholar 

  20. G. G. Lorentz, M. V. Golitschek, and Yu. Makovoz, Constr. Approx., vol. 304, Springer, 1996.

    Book  Google Scholar 

Download references

Funding

This research was carried out with the financial support of the Russian Science Foundation 22-21-00204.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Tsar’kov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsar’kov, I.G. Properties of Chebyshev Generalized Rational Fractions in \(L_1\). Russ. J. Math. Phys. 29, 583–587 (2022). https://doi.org/10.1134/S1061920822040161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920822040161

Navigation