Skip to main content
Log in

Optimal control of the motion of a helical body in a liquid using rotors

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

The motion controlled by the rotation of three internal rotors of a body with helical symmetry in an ideal liquid is considered. The problem is to select controls that ensure the displacement of the body with minimum effort. The optimality of particular solutions found earlier is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Agrachev and Y. L. Sachkov, Control Theory from the Geometric Viewpoint (2004).

    Book  MATH  Google Scholar 

  2. A. V. Arutyunov, G. G. Magaril-Ilyaev, and V. M. Tikhomirov, Pontryagin Maximum Principle: Proof and Applications, (Moscow: Factorial, 2006) (Russian).

    Google Scholar 

  3. A. Andersen, U. Pesavento, and Z. J. Wang, “Unsteady Aerodynamics of Fluttering and Tumbling Plates,” J. Fluid Mech. 541, 65–90 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. J. Biggs and W. Holderbaum, “Optimal Kinematic Control of an Autonomous Underwater Vehicle,” IEEE Transactions on Automatic Control 54 (7), 1623–1626 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  5. S. V. Bolotin, “The problem of optimal control of a Chaplygin ball by internal rotors,” Nelin. Dinam. 8 (4), 837–852 (2012) [in Russian].

    Article  MathSciNet  MATH  Google Scholar 

  6. A. V. Borisov, A. A. Kilin, and I. S. Mamaev, “How to Control Chaplygin’s Sphere Using Rotors,” Regular and Chaotic Dynamics 17 (3-4), 258–272 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. A. V. Borisov, A. A. Kilin, and I. S. Mamaev, “How to Control the Chaplygin Ball Using Rotors. II,” Regular and Chaotic Dynamics 18 (1-2), 144–158 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. A. V. Borisov, V. V. Kozlov, and I. S. Mamaev, “Asymptotic Stability and Associated Problems of Dynamics of Falling Rigid Body,” Regular and Chaotic Dynamics 12 (5), 531–565 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. A. V. Borisov, I. S. Mamaev, and I. A. Bizyaev, “Dynamical Systems with Nonintegrable Constraints: Vaconomic Mechanics, Sub-Riemannian Geometry, and Nonholonomic Mechanics,” Uspekhi Mat. Nauk (to appear).

  10. A. V. Borisov, E. V. Vetchanin, and A. A. Kilin, “Controlling the Motion of a Triaxial Ellipsoid in a Liquid Using Rotors,” Mat. Zametki (2017) (to appear).

    Google Scholar 

  11. A. V. Borisov, S. P. Kuznetsov, I. S. Mamaev, and V. A. Tenenev, “Describing the Motion of a Body with an Elliptical Cross Section in a Viscous Uncompressible Fluid by Model Equations Reconstructed from Data Processing,” Technical Physics Letters 42 (9), 886–890 (2016).

    Article  ADS  Google Scholar 

  12. A. V. Borisov, I. S. Mamaev, and V. V. Sokolov, “A New Integrable Case on so(4),” Doklady Physics 46 (12), 888–889 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  13. A. V. Borisov and I. S. Mamaev, “On the Motion of a Heavy Rigid Body in an Ideal Fluid with Circulation,” Chaos 16 (1), 013118, pp. 7 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  14. S. A. Chaplygin, “Motion of Heavi Bodies in an Incompressible Fluid”, in S. A. Chaplygin, Complete Works, Vol. I (GITTL, Moscow–Leningrad, 1933), pp. 312–336.

    Google Scholar 

  15. F. L. Chernous’ko, “Optimal periodic motions of a two-mass system in a resisting medium,” Prikl. Mat. Mekh. 72 (2), 202–215 (2008) [J. Appl. Math. Mech. 72 (2), 116–125 (2008)].

    MathSciNet  MATH  Google Scholar 

  16. S. Childress, S. E. Spagnolie, and T. Tokieda, “A bug on a raft: recoil locomotion in a viscous liquid,” J. Fluid Mech. 669, 527–556 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Yu. G. Evtushenko, Methods for Solving Extremal Problems and Their Application in Systems of Optimization (Nauka, Moscow, 1982).

    MATH  Google Scholar 

  18. E. Jahnke, F. Emde, and F. Lösch, Special Functions. Formulas, Graphs, Tables (1977).

    MATH  Google Scholar 

  19. E. Kanso and J. E. Marsden, “Optimal Motion of an Articulated Body in a Perfect Fluid,” Proc. CDC 44, 2511–2516 (2005).

    Google Scholar 

  20. A. A. Kilin and E. V. Vetchanin, “The Contol of the Motion Through an Ideal Fluid of a Rigid Body by Means of Two Moving Masses,” Russian Journal of Nonlinear Dynamics 11 (4), 633–645 (2015).

    MATH  Google Scholar 

  21. G. Kirchhoff and K. Hensel, Vorlesungen über mathematische Physik. Mechanik (Leipzig: BG Teubner, 1874).

    Google Scholar 

  22. A. I. Klenov and A. A. Kilin, “Influence of Vortex Structures on the Controlled Motion of an Above-Water Screwless Robot,” Regular and Chaotic Dynamics 21 (7-8), 927–938 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. V. V. Kozlov and D. A. Onishchenko, “Motion of a body with undeformable shell and variable mass geometry in an unbounded perfect liquid” J. Dyn. Differ. Equations 15 (2–3), 553–570 (2003)..

    Article  ADS  MATH  Google Scholar 

  24. V. V. Kozlov and D. A. Onishchenko, “Nonintegrability of Kirchhoff’s Equations,” Dokl. Akad. Nauk SSSR 266 (6), 1298–1300 (1982) [in Russian].

    MathSciNet  MATH  Google Scholar 

  25. V. V. Kozlov and S. M. Ramodanov, “Motion of a Variable Body in an Ideal Fluid,” Prikl. Mat. Mekh. 65 (4), 592–601 (2001) [J. Appl. Math. Mech. 65 (4), 579–587 (2001)].

    MathSciNet  MATH  Google Scholar 

  26. V. V. Kozlov and S. M. Ramodanov, “On the Motion, in an Ideal Fluid, of a Body with a Rigid Shell and a Changing Mass Geometry,” Dokl. Ross. Akad. Nauk 382 (4), 478–481 (2002) [in Russian].

    Google Scholar 

  27. S. P. Kuznetsov, “Motion of a Falling Plate in a Liquid: Finite-Dimensional Models and Phenomena of Complicated Nonlinear Dynamics,” Nelin. Dinam. 11 (1), 3–49 (2015) [in Russian].

    Article  MathSciNet  MATH  Google Scholar 

  28. J. C. Maxwell, “On a Particular Case of the Descent of a Heavy Body in a Resisting Medium,” Camb. Dublin Math. J 9, 145–148 (1854).

    Google Scholar 

  29. S. M. Ramodanov and V. A. Tenenev, “Motion of a Body with Variable Mass Geometry in an Unbounded Viscous Liquid,” Nelin. Dinam. 7 (3), 635–647 (2011) [in Russian].

    Article  Google Scholar 

  30. V. V. Sokolov, “A new integrable case for the Kirchhoff equations.,” Teoret. Mat. Fiz. 129 (1), 31–37 (2001) [Theoret. and Math. Phys. 129 (1), 1335–1340 (2001)].

    Article  MathSciNet  Google Scholar 

  31. V. A. Steklov, “On the Motion of a Heavy Body in a Liquid,” Paper 1., Soobshch. Khar’k. Mat. O-va (2) 2 (5-6), 209–235 (1891) [in Russian].

    Google Scholar 

  32. J. Stoer and R. Bulirsch, Introduction to numerical analysis., Vol. 12. (Springer Science & Business Media, 2013).

    MATH  Google Scholar 

  33. M. Svinin, A. Morinaga, and M. Yamamoto, “An Analysis of the Motion Planning Problem for a Spherical Rolling Robot Driven by Internal Rotors,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 6 (2012).

    Google Scholar 

  34. P. Tallapragada, and S. D. Kelly, “Self-propulsion of free solid bodies with internal rotors via localized singular vortex shedding in planar ideal liquids,” The European Physical Journal Special Topics 224 (17), 3185–3197 (2015).

    Article  ADS  Google Scholar 

  35. V. A. Tenenev, E. V. Vetchanin, and L. F. Ilaletdinov, “Chaotic Dynamics in the Problem of the Fall of a Screw-Shaped Body in a Fluid,” Russian Journal of Nonlinear Dynamics 12 (1), 99–120 (2016).

    MATH  Google Scholar 

  36. E. V. Vetchanin and A. A. Kilin, “Control of Body Motion in an Ideal Fluid Using the Internal Mass and the Rotor in the Presence of Circulation Around the Body,” Journal of Dynamical and Control Systems 23, pp. 435–458 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  37. E. V. Vetchanin and A. A. Kilin, “Controlled Motion of a Rigid Body with Internal Mechanisms in an Ideal Incompressible Fluid,” Proceedings of the Steklov Institute of Mathematics 295, 302–332 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  38. E. V. Vetchanin and A. A. Kilin, “Free and Controlled Motion of a Body with Moving Internal Mass Though a Fluid in the Presence of Circulation Around the Body,” Doklady Physics 466 (3), 293–297 (2016).

    Google Scholar 

  39. E. V. Vetchanin, A. A. Kilin, and I. S. Mamaev, “Control of the Motion of a Helical Body in a Fluid Using Rotors,” Regular and Chaotic Dynamics 21 (7-8), 874–884 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. E. V. Vetchanin, I. S. Mamaev, and V. A. Tenenev, “The Self-Propulsion of a Body with Moving Internal Masses in a Viscous Fluid,” Regular and Chaotic Dynamics 18 (1-2), 100–117 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. C. A. Woolsey and N. E. Leonard, “Stabilizing Underwater Vehicle Motion Using Internal Rotors,” Automatica J. IFAC 38 (12), 2053–2062 (2002).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Vetchanin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vetchanin, E.V., Mamaev, I.S. Optimal control of the motion of a helical body in a liquid using rotors. Russ. J. Math. Phys. 24, 399–411 (2017). https://doi.org/10.1134/S1061920817030128

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920817030128

Navigation