Skip to main content
Log in

Minimal basis of the symmetry algebra for three-frequency resonance

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

An explicit description of a finite minimal basis of generators is given for the algebra of symmetries of a generic quantum three-frequency resonance oscillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.T. Swimm and J.B. Delos, “Semiclassical Calculations of Vibrational Energy Levels for Nonseparable Systems Using the Birkhoff-Gustavson Normal Form,” J. Chem. Phys. 71(4), 1706–1717 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  2. M. K. Ali, “The Quantum Normal Form and Its Equivalents,” J. Math. Phys. 26(10), 2565–2572 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  3. B. Eckhardt, “Birkhoff-Gustavson Normal Form in Classical and Quantum Mechanics,” J. Phys. A 19, 2961–2972 (1986).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. J. Robert and M. Joyeux, “Canonical Perturbation Theory Versus Born-Oppenheimer-Type Separation of Motions: the Vibrational Dynamics of C3,” J. Chem. Phys. 119, 8761–8762 (2003).

    Article  ADS  Google Scholar 

  5. A.Yu. Anikin, “Quantum Birkhoff Normal Forms,” Teoret. Mat. Fiz. 160(3), 487–506 (2009) [Theoret. and Math. Phys.].

    Google Scholar 

  6. V. M. Babich and V. S. Buldyrev, Asymptotic Methods in Problems of Short-Wave Diffraction (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  7. B. Simon, “Semiclassical Analysis of Low Lying Eigenvalues. I,” Ann. Inst. H. Poincaré. Phys. Théor. 38(3), 295–307 (1983); a correction in 40, 224.

    MATH  Google Scholar 

  8. B. Helffer and J. Sjöstrand, “Multiple Wells in the Semiclassical Limit. I,” Comm. Partial Differential Equations 9, 337–408 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Sjöstrand, “Semi-Excited States in Nondegenerate Potential Wells,” Asymptot. Anal. 6, 29–43 (1992).

    MATH  Google Scholar 

  10. J. Schwinger, “On Angular Momentum Theory,” AEC Report NYO-3071 (1952); reprinted in: Quantum Theory of Angular Momentum, Ed. by L. C. Biedenharn and H. van Dam (Academic Press, New York, 1965), pp. 229–279.

  11. V. Bargmann, “On the Representations of the Rotation Group,” Rev. Modern Phys. 34(4), 829–845 (1962).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Ya. A. Smorodinskii and L. A. Shelepin, “Clebsch-Gordan Coefficients, Viewed from Different Sides,” Uspekhi Fiz. Nauk 106(1), 3–45 (1972) [Physics-Uspekhi (Advances in Physical Sciences)].

    MathSciNet  Google Scholar 

  13. L. C. Biedenharn and J.D. Louck, Angular Momentum in Quantum Physics: Theory and Applications, Advanced Book Program (Addison-Wesley, Reading, 1981).

    MATH  Google Scholar 

  14. J. J. Sakurai, Modern Quantum Mechanics, revised edition (Addison-Wesley, New York, 1994).

    Google Scholar 

  15. J. M. Jauch and E. L. Hill, “On the Problem of Degeneracy in Quantum Mechanics,” Phys. Rev. 57, 641–645 (1940).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Yu.N. Demkov, “Symmetry Group of Isotropic Oscillator. I, II, III,” Vestnik Leningrad. Univ., No. 11, 127 (1953).

  17. G. A. Baker, “Degeneracy of the n-Dimensional, Isotropic, Harmonic Oscillator,” Phys. Rev. 103, 1119–1120 (1956).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. M. Karasev, “Birkhoff Resonances and Quantum Ray Method,” in: Proc. Intern. Seminar “Days of Diffraction-2004” (St. Petersburg University and Steklov Math. Institute, St. Petersburg, 2004), pp. 114–126.

    Google Scholar 

  19. M. Karasev, “Noncommutative Algebras, Nano-Structures, and Quantum Dynamics Generated by Resonances. II,” Adv. Stud. Contemp. Math. 11(1), 33–56 (2005).

    MATH  MathSciNet  Google Scholar 

  20. M. Karasev, “Noncommutative Algebras, Nano-Structures, and Quantum Dynamics Generated by Resonances, III,” Russ. J. Math. Phys. 13(2), 131–150 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  21. M. V. Karasev and E. M. Novikova, “Algebra and Quantum Geometry of Multifrequency Resonance,” Izv. Ross. Akad. Nauk Ser. Mat. [Izv. Math.] (in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Novikova.

Additional information

The work is supported by the Russian Foundation for Basic Research (grant no. 09-01-00606-a).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novikova, E.M. Minimal basis of the symmetry algebra for three-frequency resonance. Russ. J. Math. Phys. 16, 518–528 (2009). https://doi.org/10.1134/S1061920809040062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920809040062

Keywords

Navigation