Skip to main content
Log in

Algebra of Symmetries of Three-Frequency Hyperbolic Resonance

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The algebra of symmetries of a quantum three-frequency hyperbolic resonance oscillator is studied. It is shown that this algebra is determined by a finite set of generators with polynomial commutation relations. The irreducible representations of this algebra and the corresponding coherent states are constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Karasev, “Noncommutative algebras, nano-structures, and quantum dynamics generated by resonances. II,” Adv. Stud. Contemp. Math. 11 (1) 33–56 (2005).

    MathSciNet  MATH  Google Scholar 

  2. M. V. Karasev and E. M. Novikova, “Algebra and quantum geometry of multifrequency resonance,” Izv Ross. Akad. Nauk Ser. Mat. 74 (6), 55–106 (2010) [Izv. Math 74 (6), 1155-1204 (2010)].

    Article  MathSciNet  Google Scholar 

  3. E. M. Novikova “Minimal basis of the symmetry algebra for three-frequency resonance,” Russ. J. Math. Phys. 16 (4) 518–528 (2009).

    Article  MathSciNet  Google Scholar 

  4. M. V. Karasev and E. M. Novikova, “Algebra of symmetries of three-frequency resonance: reduction of a reducible case to an irreducible case,” Math. Notes 104 (6), 45–59 (2018).

    MathSciNet  MATH  Google Scholar 

  5. M. V. Karasev and E. M. Novikova, “Secondary resonances in Penning traps. Non-Lie symmetry algebras and quantum states,” Russ. J. Math. Phys. 20 (3), 283–294 (2013).

    Article  MathSciNet  Google Scholar 

  6. M. V. Karasev and E. M. Novikova, “Planar Penning trap with combined resonance and top dynamics on quadratic algebra,” Russ. J. Math. Phys. 22 (4), 463–468 (2015).

    Article  MathSciNet  Google Scholar 

  7. M. V. Karasev, E. M. Novikova, and E. Vybornyi, “Bi-states and 2-level systems in rectangular Penning trap,” Russ. J. Math. Phys. 24 (4), 454–464 (2017).

    Article  MathSciNet  Google Scholar 

  8. K. Blaum and E. Herfurth (Eds.), Trapped Charged Particles and Fundamental Interactions (Springer-Verlag, 2008).

    Google Scholar 

  9. J. Goldman and G. Gabrielse, “Optimized planar Penning traps for quantum information studies,” Hyperfine Interact. 199 279–289 (2011).

    Article  Google Scholar 

  10. M. V. Karasev and V. P. Maslov, “Asymptotic and geometric quantization,” Uspekhi Mat. Nauk 39 (6(240)), 115–173 (1984) [Russian Math. Surveys Nauk 39 (6), 133-205 (1984)].

    MathSciNet  MATH  Google Scholar 

  11. A. Yu. Anikin, “Quantum Birkhoff normal forms,” Teoret. Mat. Fiz. 160 (3), 487–506 (2009) [Theoret. and Math. Phys. 160 (3), 1274-1291 (2009)].

    Article  MathSciNet  Google Scholar 

  12. M. Karasev and E. Novikova, “Non-Lie permutation relations, coherent states, and quantum embedding,” in Coherent Transform, Quantization, and Poisson Geometry, Amer. Math. Soc. Transi. Ser. 2, (AMS, Providence, RI, 1998). Vol. 187, pp. 1–202.

    MathSciNet  MATH  Google Scholar 

  13. M. V Karasev and E. M. Novikova, “Algebras with quadratic commutation relations for axially perturbed Coulomb-Dirac field,” Teoret. Mat. Fiz. 141 (3), 424–454 (2004) [Theoret. and Math. Phys. 141 (3), 1698-1724 (2004).

    Article  MathSciNet  Google Scholar 

  14. M. V Karasev and E. M. Novikova, “Algebras with polynomial commutation relations for the Zeeman effect in the Coulomb-Dirac field,” Teoret. Mat. Fiz. 142 (1) 127–147 (2005) [Theoret. and Math. Phys. 142 (1) 109-127 (2005).

    Article  MathSciNet  Google Scholar 

  15. M. V Karasev and E. M. Novikova, “Algebras with polynomial commutation relations for the Zeeman-Stark effect in the hydrogen atom,” Teoret. Mat. Fiz. 142 (3), 530–555 (2005) [Theoret. and Math. Phys. 142 (3), 447-469 (2005).

    Article  MathSciNet  Google Scholar 

  16. M. Karasev and E. Novikova, “Algebras with polynomial commutation relations for a quantum particle in electric and magnetic fields,” Quantum Algebras and Poisson Geometry in Mathematical Physics, Amer. Math. Soc. Transi. Ser. 2 (Amer. Math. Soc, Providence, RI, 2005). Vol. 216, pp. 19–135.

    MathSciNet  MATH  Google Scholar 

  17. V. P. Maslov, “Application of the method of ordered operators to obtain exact solutions,” Teoret. Mat. Fiz. 33 (2), 185–209 (1977) [Theoret. and Math. Phys. 33 (2), 960-976 (1977)].

    MathSciNet  MATH  Google Scholar 

  18. M. V. Karasev, “The asymptotic spectrum and oscillation front for operators with nonlinear commutation relations,” Dokl. Akad. Nauk SSSR 243 (1) 15–18 (1978) [Soviet Math. Dokl. 19 (6) 1300-1304 (1978)].

    MathSciNet  MATH  Google Scholar 

  19. L. D. Faddeev, “Completely integrable quantum models of field theory,” in Problems of Quantum Field Theory (Dubna, 1979). Vol. P. 12462, pp. 249–299.

    Google Scholar 

  20. V. P. Maslov and V. E. Nazaikinskii, “Algebras with general commutation relations and their applications. I. Pseudodifferential equations with increasing coefficients,” in Itogi Nauki i Tekhniki [Progress in Science and Technology], Current Problems in Mathematics. Fundamental Directions (VINITI, Moscow, 1979). Vol. 13, pp. 5–144 [J. Soviet Math. 15 (3) 167-273 (1981)].

    MATH  Google Scholar 

  21. M. V. Karasev and V. P. Maslov, “Algebras with general commutation relations and their applications. II. Unitary-nonlinear operator equations,” in Itogi Nauki i Tekhniki [Progress in Science and Technology], Current Problems in Mathematics. Fundamental Directions (VINITI, Moscow, 1979). Vol. 13, pp. 145-267 [J. SovietMath. 15 (3), 273-368 (1981)].

  22. E. K. Sklyanin, “Some algebraic structures connected with the Yang-Baxter equation. Representations of quantum algebras,” Funktsional. Anal, i Prilozhen. 17 (4), 34–48 (1983) [Funct. Anal. Appl. 17 (4), 273-284 (1983)].

    MathSciNet  MATH  Google Scholar 

  23. M. V. Karasev and V. P. Maslov, Nonlinear Poisson Brackets. Geometry and Quantization (Nauka, Moscow, 1991; Amer. Math. Soc, Providence, RI, 1993). in Transi. Math. Monogr., Vol. 119.

    MATH  Google Scholar 

  24. M. V. Karasev and E. M. Novikova, “Representation of exact and semiclassical eigenfunctions via coherent states. Hydrogen atom in a magnetic field,” Teoret. Mat. Fiz. 108 (3), 339–387 (1996) [Theoret. and Math. Phys. 108 (3) 1119-1159 (1996)].

    Article  MathSciNet  Google Scholar 

  25. S. Yu. Dobrokhotov and M. A. Poteryakhin, “Normal forms near two-dimensional resonance tori for the multidimensional anharmonic oscillator,” Mat. Zametki 76 (5), 701–713 (2004) [Math. Notes 76 (5), 653-664 (2004)].

    Article  MathSciNet  Google Scholar 

  26. F. G. Gustavson, “On constructing formal integrals of a Hamiltonian system near an equilibrium point,” Astron. J. 71 670–686 (1966).

    Article  Google Scholar 

  27. V. V. Kozlov, Symmetries, Topology and Resonances in Hamiltonian Mechanics, in Ergeb. Math. Grenzgeb. (3), (Springer-Verlag, Berlin, 1996; Izd. UdGU, Izhevsk, 1995). Vol. 31.

    Google Scholar 

Download references

Funding

This work was implemented in the framework of the Basic Research Program at the National Research University Higher School of Economics (HSE University) in 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Novikova.

Additional information

The article was submitted by the author for the English version of the journal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikova, E.M. Algebra of Symmetries of Three-Frequency Hyperbolic Resonance. Math Notes 106, 940–956 (2019). https://doi.org/10.1134/S0001434619110300

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434619110300

Keywords

Navigation