Skip to main content
Log in

Inequalities for a unified family of Voigt functions in several variables

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

The classical Voigt functions occur frequently in a wide variety of problems in astrophysical spectroscopy, emission, absorption and transfer of radiation in heated atmosphere, and plasma dispersion, and indeed also in the theory of neutron reactions. Here, in the present paper, by applying several known upper bounds for the first-kind Bessel function J ν (x) given recently by (for example) Landau, Olenko and Krasikov, sharp bounding inequalities are obtained for the unified multivariable Voigt function V μ,ν (x; y) in terms of the confluent Fox-Wright function 1ψ0 and its incomplete variant 1ψ0. Connections of the unified multivariable Voigt function V μ,ν (x; y) with other unifications and generalizations of the classical Voigt function are also briefly pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (translation edited and with a preface by A. Jeffrey and D. Zwillinger), 6th ed. (Academic Press, San Diego, 2000).

    MATH  Google Scholar 

  2. M. Kamarujjama and D. Singh, “Some Representations of Unified Voigt Functions,” Acta Math. Sinica (Engl. Ser.) 21(4), 865–868 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  3. S. Khan, B. Agrawal, and M. A. Pathan, “Some Connections between Generalized Voigt Functions with the Different Parameters,” Appl. Math. Comput. 181, 57–64 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  4. I. Krasikov, “Uniform Bounds for Bessel Functions,” J. Appl. Anal. 12, 83–91 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  5. D. Klusch, “Astrophysical Spectroscopy and Neutron Reactions: Integral Transforms and Voigt Functions,” Astrophys. Space Sci. 175, 229–240 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  6. L. Landau, “Monotonicity and Bounds on Bessel Functions,” in Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory (Berkeley, California: June 11–13, 1999), Ed. by H. Warchall; Electronic J. Differential Equations Conf. 04, 147–154 (2000).

  7. A. M. Mathai and R. K. Saxena, The H-Function with Applications in Statistics and Other Disciplines (John Wiley and Sons, New York, 1978).

    MATH  Google Scholar 

  8. A. Ya. Olenko, “Upper Bound on √xJv(x) and Its Applications,” Integral Transforms Spec. Funct. 17, 455–467 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  9. M. A. Pathan, M. Kamarujjama, and M. K. Alam, “On Multiindices and Multivariables Presentation of the Voigt Functions,” J. Comput. Appl. Math. 160, 251–257 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. F. Reiche, “Über die Emission, Absorption und Intesitätsverteilung von Spektrallinien,” Ber. Deutsch. Phys. Ges. 15, 3–21 (1913).

    Google Scholar 

  11. A. Sommerfeld, “Mathematische Theorie der Diffraktion,” Math. Ann. 47, 317–374 (1896).

    Article  MathSciNet  MATH  Google Scholar 

  12. H. M. Srivastava and M.-P. Chen, “Some Unified Presentations of the Voigt Functions,” Astrophys. Space Sci. 192, 63–74 (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. H. M. Srivastava and E. A. Miller, “A Unified Presentation of the Voigt Functions,” Astrophys. Space Sci. 135, 111–118 (1987).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. H. M. Srivastava, M. A. Pathan, and M. Kamarajjuma, “Some Unified Presentations of the Generalized Voigt Functions,” Commun. Appl. Anal. 2, 49–64 (1998).

    MATH  MathSciNet  Google Scholar 

  15. H. M. Srivastava, K. C. Gupta, and S. P. Goyal, The H-Functions of One and Two Variables with Applications (South Asian Publishers, New Delhi, 1982).

    MATH  Google Scholar 

  16. W. Voigt, “Zur Theorie der Beugung ebener inhomogener Wellen an einem geradlinig begrentzen unendlichen und absolut schwarzen Schirm,” Gött. Nachr., No. 1, 1–33 (1899).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, H.M., Pogány, T.K. Inequalities for a unified family of Voigt functions in several variables. Russ. J. Math. Phys. 14, 194–200 (2007). https://doi.org/10.1134/S1061920807020082

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920807020082

Keywords

Navigation