Skip to main content

Abstract

The principal aim of this paper is to employ Bessel-type operators in proving the inequality

$$\displaystyle \begin{aligned} \int _0^\pi dx \, |f'(x)|{ }^2 \geq \dfrac {1}{4}\int _0^\pi dx \, \dfrac {|f(x)|{ }^2}{\sin ^2 (x)}+\dfrac {1}{4}\int _0^\pi dx \, |f(x)|{ }^2,\quad f\in H_0^1 ((0,\pi )), \end{aligned} $$

where both constants 1∕4 appearing in the above inequality are optimal. In addition, this inequality is strict in the sense that equality holds if and only if f ≡ 0. This inequality is derived with the help of the exactly solvable, strongly singular, Dirichlet-type Schrödinger operator associated with the differential expression

$$\displaystyle \begin{aligned} \tau _s=-\dfrac {d^2}{dx^2}+\dfrac {s^2-(1/4)}{\sin ^2 (x)}, \quad s \in [0,\infty ), \; x \in (0,\pi ). \end{aligned} $$

The new inequality represents a refinement of Hardy’s classical inequality

$$\displaystyle \begin{aligned} \int _0^\pi dx \, |f'(x)|{ }^2 \geq \dfrac {1}{4}\int _0^\pi dx \, \dfrac {|f(x)|{ }^2}{x^2}, \quad f\in H_0^1 ((0,\pi )), \end{aligned} $$

and it also improves upon one of its well-known extensions in the form

$$\displaystyle \begin{aligned} \int _0^\pi dx \, |f'(x)|{ }^2 \geq \dfrac {1}{4}\int _0^\pi dx \, \dfrac {|f(x)|{ }^2}{d_{(0,\pi )}(x)^2}, \quad f\in H_0^1 ((0,\pi )), \end{aligned} $$

where d (0,π)(x) represents the distance from x ∈ (0, π) to the boundary {0, π} of (0, π).

Dedicated with great pleasure to Lance Littlejohn on the occasion of his 70th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In particular, λ D,N,0 and λ F,0 are the first eigenvalue of the mixed Dirichlet/Neumann and Dirichlet operator on the interval (0,  1).

  2. 2.

    Here the subscripts 0,  0 in m 0,0,s indicate the Dirichlet (i.e., Friedrichs) boundary conditions at x = 0, π, a special case of the m α,β-function discussed in [29] associated with separated boundary conditions at x = 0, π, indexed by boundary condition parameters α, β ∈ [0, π].

References

  1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972)

    MATH  Google Scholar 

  2. N.I. Akhiezer, I.M. Glazman, Theory of Linear Operators in Hilbert Space, vol. II (Pitman, Boston, 1981)

    MATH  Google Scholar 

  3. V.S. Alekseeva, A.Y. Ananieva, On extensions of the Bessel operator on a finite interval and a half-line. J. Math. Sci. 187, 1–8 (2012)

    Article  MathSciNet  Google Scholar 

  4. A.Y. Anan’eva, V.S. Budyka, On the spectral theory of the Bessel operator on a finite interval and the half-line. Diff. Equ. 52, 1517–1522 (2016)

    Article  MathSciNet  Google Scholar 

  5. A.Y. Ananieva, V.S. Budyika, To the spectral theory of the Bessel operator on finite interval and half-line. J. Math. Sci. 211, 624–645 (2015)

    Article  MathSciNet  Google Scholar 

  6. F.G. Avkhadiev, Brezis–Marcus problem and its generalizations. J. Math. Sci. 252, 291–301 (2021)

    Article  MathSciNet  Google Scholar 

  7. F.G. Avkhadiev, K.J. Wirths, Unified Poincaré and Hardy inequalities with sharp constants for convex domains. Angew. Math. Mech. 87, 632–642 (2007)

    Article  MathSciNet  Google Scholar 

  8. F.G. Avkhadiev, K.J. Wirths, Sharp Hardy-type inequalities with Lamb’s constant. Bull. Belg. Math. Soc. Simon Stevin 18, 723–736 (2011)

    Article  MathSciNet  Google Scholar 

  9. A.A. Balinsky, W.D. Evans, R.T. Lewis, The Analysis and Geometry of Hardy’s Inequality (Universitext, Springer, 2015)

    Book  Google Scholar 

  10. H. Brezis, M. Marcus, Hardy’s inequalities revisited. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25, 217–237 (1997)

    Google Scholar 

  11. L. Bruneau, J. Dereziński, V. Georgescu, Homogeneous Schrödinger operators on half-line. Ann. H. Poincaré 12, 547–590 (2011)

    Article  Google Scholar 

  12. W. Bulla, F. Gesztesy, Deficiency indices and singular boundary conditions in quantum mechanics. J. Math. Phys. 26, 2520–2528 (1985)

    Article  MathSciNet  Google Scholar 

  13. R.S. Chisholm, W.N. Everitt, L.L. Littlejohn, An integral operator inequality with applications. J. Inequal. Appl. 3, 245–266 (1999)

    MathSciNet  MATH  Google Scholar 

  14. E.A. Coddington, N. Levinson, Theory of Ordinary Differential Equations (Krieger Publ., Malabar, 1985)

    MATH  Google Scholar 

  15. E.B. Davies, Spectral Theory and Differential Operators. Cambridge Studies in Advanced Mathematics, vol. 42 (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  16. J. Dereziński, V. Georgescu, On the domains of Bessel operators. Ann. H. Poincaré 22, 3291–3309 (2021)

    Article  MathSciNet  Google Scholar 

  17. J. Dereziński, M. Wrochna, Exactly solvable Schrödinger operators. Ann. H. Poincaré 12, 397–418 (2011). See also the update at arXiv:1009.0541

  18. N. Dunford, J.T. Schwartz, Linear Operators. Part II: Spectral Theory (Wiley, Interscience, New York, 1988)

    Google Scholar 

  19. D.E. Edmunds, W.D. Evans, Spectral Theory and Differential Operators, 2nd edn. (Oxford University Press, Oxford, 2018)

    Book  Google Scholar 

  20. W.N. Everitt, H. Kalf, The Bessel differential equation and the Hankel transform. J. Comp. Appl. Math. 208, 3–19 (2007)

    Article  MathSciNet  Google Scholar 

  21. S. Flügge, Practical Quantum Mechanics, vol. I. Reprinted 2nd 1994 edn. (Springer, Berlin, 1999)

    Google Scholar 

  22. G.B. Folland, Real Analysis. Modern Techniques and Their Applications, 2nd edn. (Wiley-Interscience, New York, 1999)

    Google Scholar 

  23. F. Gesztesy, W. Kirsch, One-dimensional Schrödinger operators with interactions singular on a discrete set. J. Reine Angew. Math. 362, 28–50 (1985)

    MathSciNet  MATH  Google Scholar 

  24. F. Gesztesy, L. Pittner, On the Friedrichs extension of ordinary differential operators with strongly singular potentials. Acta Phys. Austriaca 51, 259–268 (1979)

    MathSciNet  Google Scholar 

  25. F. Gesztesy, M. Ünal, Perturbative oscillation criteria and Hardy-type inequalities. Math. Nachr. 189, 121–144 (1998)

    Article  MathSciNet  Google Scholar 

  26. F. Gesztesy, M. Zinchenko, Sturm–Liouville Operators, Their Spectral Theory, and Some Applications. In preparation

    Google Scholar 

  27. F. Gesztesy, C. Macedo, L. Streit, An exactly solvable periodic Schrödinger operator. J. Phys. A18, L503–L507 (1985)

    MATH  Google Scholar 

  28. F. Gesztesy, L.L. Littlejohn, I. Michael, R. Wellman, On Birman’s sequence of Hardy–Rellich-type inequalities, J. Differ. Equ. 264, 2761–2801 (2018)

    Article  MathSciNet  Google Scholar 

  29. F. Gesztesy, L.L. Littlejohn, R. Nichols, On self-adjoint boundary conditions for singular Sturm–Liouville operators bounded from below. J. Differ. Equ. 269, 6448–6491 (2020)

    Article  MathSciNet  Google Scholar 

  30. F. Gesztesy, L.L. Littlejohn, M. Piorkowski, J. Stanfill, The Jacobi operator and its Weyl–Titchmarsh–Kodaira m-functions. In preparation

    Google Scholar 

  31. F. Gesztesy, M.M.H. Pang, J. Stanfill, On domain properties of Bessel-type operators. arXiv:2107.09271

  32. G.R. Goldstein, J.A. Goldstein, R.M. Mininni, S. Romanelli, Scaling and variants of Hardy’s inequality. Proc. Amer. Math. Soc. 147, 1165–1172 (2019)

    Article  MathSciNet  Google Scholar 

  33. G.H. Hardy, Notes on some points in the integral calculus, LX. An inequality between integrals. Messenger Math. 54, 150–156 (1925)

    Google Scholar 

  34. G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities (Cambridge University Press, Cambridge, 1988). Reprinted

    Google Scholar 

  35. M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev, A geometrical version of Hardy’s inequality. J. Funct. Anal. 189, 539–548 (2002)

    Article  MathSciNet  Google Scholar 

  36. L. Infeld, T.E. Hull, The factorization method. Rev. Mod. Phys. 23, 21–68 (1951)

    Article  MathSciNet  Google Scholar 

  37. K. Jörgens, F. Rellich, Eigenwerttheorie Gewöhnlicher Differentialgleichungen (Springer, Berlin, 1976)

    Book  Google Scholar 

  38. H. Kalf, On the characterization of the Friedrichs extension of ordinary or elliptic differential operators with a strongly singular potential. J. Funct. Anal. 10, 230–250 (1972)

    Article  MathSciNet  Google Scholar 

  39. H. Kalf, A characterization of the Friedrichs extension of Sturm–Liouville operators. J. London Math. Soc. (2) 17, 511–521 (1978)

    Google Scholar 

  40. H. Kalf, J. Walter, Strongly singular potentials and essential self-adjointness of singular elliptic operators in \(C_0^{\infty }({\mathbb {R}}^n\backslash \{0\})\). J. Funct. Anal. 10, 114–130 (1972)

    Google Scholar 

  41. A. Kostenko, G. Teschl, On the singular Weyl–Titchmarsh function of perturbed spherical Schrödinger operators. J. Differ. Equ. 250, 3701–3739 (2011)

    Article  Google Scholar 

  42. A. Kufner, Weighted Sobolev Spaces (A Wiley-Interscience Publication, John Wiley & Sons, Hoboken, 1985)

    MATH  Google Scholar 

  43. A. Kufner, L. Maligranda, L.-E. Persson, The Hardy Inequality. About its History and Some Related Results (Vydavatelský Servis, Pilsen, 2007)

    Google Scholar 

  44. A. Kufner, L.-E. Persson, N. Samko, Weighted Inequalities of Hardy Type, 2nd edn. (World Scientific, Singapore, 2017)

    Book  Google Scholar 

  45. E. Landau, A note on a theorem concerning series of positive terms: extract from a letter of Prof. E. Landau to Prof. I. Schur. J. London Math. Soc. 1, 38–39 (1926)

    MATH  Google Scholar 

  46. W. Lotmar, Zur Darstellung des Potentialverlaufs bei zweiatomigen Molekülen. Z. Physik 93, 528–533 (1935)

    Article  Google Scholar 

  47. M.A. Naimark, Linear Differential Operators. Part II: Linear Differential Operators in Hilbert Space. Transl. by E.R. Dawson, Engl. translation edited by W.N. Everitt (Ungar Publishing, New York, 1968)

    Google Scholar 

  48. R.G. Nasibullin, R.V. Makarov, Hardy’s inequalities with remainders and Lamb-type equations. Siberian Math. J. 61, 1102–1119 (2020)

    Article  MathSciNet  Google Scholar 

  49. H.-D. Niessen, A. Zettl, Singular Sturm–Liouville problems: the Friedrichs extension and comparison of eigenvalues. Proc. London Math. Soc. (3) 64, 545–578 (1992)

    Google Scholar 

  50. B. Opic, A. Kufner, Hardy-Type Inequalities. Pitman Research Notes in Mathematics Series, vol. 219 (Longman Scientific & Technical, Harlow, 1990)

    Google Scholar 

  51. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark (eds.), NIST Handbook of Mathematical Functions. National Institute of Standards and Technology (NIST), U.S. Dept. of Commerce (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  52. D.B. Pearson, Quantum Scattering and Spectral Theory (Academic Press, London, 1988)

    MATH  Google Scholar 

  53. L.-E. Persson, S.G. Samko, A note on the best constants in some Hardy inequalities. J. Math. Inequal. 9, 437–447 (2015)

    Article  MathSciNet  Google Scholar 

  54. G. Pöschl, E. Teller, Bemerkungen zur Quantenmechanik des anharmonischen Oszillators. Zeitschr. Physik 83, 143–151 (1933)

    Article  Google Scholar 

  55. F. Rellich, Die zulässigen Randbedingungen bei den singulären Eigenwertproblemen der mathematischen Physik. (Gewöhnliche Differentialgleichungen zweiter Ordnung.) Math. Z. 49, 702–723 (1943/44)

    Google Scholar 

  56. F. Rellich, Halbbeschränkte gewöhnliche Differentialoperatoren zweiter Ordnung. Math. Ann. 122, 343–368 (1951) (German)

    Google Scholar 

  57. N. Rosen, P.M. Morse, On the vibrations of polyatomic molecules. Phys. Rev. 42, 210–217 (1932)

    Article  Google Scholar 

  58. R. Rosenberger, A new characterization of the Friedrichs extension of semibounded Sturm–Liouville operators. J. London Math. Soc. (2) 31, 501–510 (1985)

    Google Scholar 

  59. F.L. Scarf, Discrete states for singular potential problems. Phys. Rev. 109, 2170–2176 (1958)

    Article  Google Scholar 

  60. F.L. Scarf, New soluble energy band problem. Phys. Rev. 112, 1137–1140 (1958)

    Article  MathSciNet  Google Scholar 

  61. G. Teschl, Mathematical Methods in Quantum Mechanics. With Applications to Schrödinger Operators, 2nd edn. Graduate Studies in Mathematics, vol. 157 (American Mathematical Society, Providence, 2014)

    Google Scholar 

  62. J. Weidmann, Linear Operators in Hilbert Spaces. Graduate Texts in Mathematics, vol. 68 (Springer, New York, 1980)

    Google Scholar 

  63. J. Weidmann, Lineare Operatoren in Hilberträumen. Teil II: Anwendungen (Teubner, Stuttgart, 2003)

    Google Scholar 

  64. A. Zettl, Sturm–Liouville Theory. Mathematical Surveys and Monographs, vol. 121 (American Mathematical Society, Providence, 2005)

    Google Scholar 

Download references

Acknowledgements

We are indebted to Jan Derezinski, Aleksey Kostenko, Ari Laptev, and Gerald Teschl for very helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz Gesztesy .

Editor information

Editors and Affiliations

Appendices

A.1 The Weyl–Titchmarsh–Kodaira m-Function Associated with T s,F

We start by introducing a normalized fundamental system of solutions ϕ 0,s(z, ⋅) and θ 0,s(z, ⋅) of τ s u = zu, s ∈ [0, 1), \(z \in {\mathbb {C}}\), satisfying (cf. the generalized boundary values introduced in (2.14), (2.15))

$$\displaystyle \begin{aligned} \widetilde \theta_{0,s}(z,0)=1,\quad \widetilde \theta^{\, \prime}_{0,s}(z,0)=0, \quad \widetilde \phi_{0,s}(z,0)=0,\quad \widetilde \phi^{\, \prime}_{0,s}(z,0)=1, \end{aligned} $$
(A.1)

with ϕ 0,s(⋅ , x) and θ 0,s(⋅ , x) entire for fixed x ∈ (0, π). To this end, we introduce the two linearly independent solutions to τ s y = zy (entire w.r.t. z for fixed x ∈ (0, π)) given by

(A.2)

Using the connection formula found in [1, Eq. 15.3.6] yields the behavior near x = 0, π,

(A.3)

Remark A.1.1

Before we turn to the case s = 0, we recall Gauss’s identity (cf. [1, no. 15.1.20])

$$\displaystyle \begin{aligned} F(a,b;c;1) = \frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}, \quad c \in{\mathbb{C}} \backslash \{ - {\mathbb{N}}_0\}, \; \text{Re}(c-a-b) > 0, {} \end{aligned} $$
(A.4)

and the differentiation formula (cf. [1, no. 15.2.1])

$$\displaystyle \begin{aligned} \frac{d}{dz} F(a,b;c;z) = \frac{ab}{c} F(a+1,b+1;c+1;z), \quad a, b, c \in {\mathbb{C}}, \; z \in \{\zeta \in {\mathbb{C}} \,|\, |\zeta| < 1\}, {} \end{aligned} $$
(A.5)

which imply that for s ∈ (0, 1), the two F(⋅ ,  ⋅ ;  ⋅ ;1) exist in (A.2) (indeed, for j = 1, 2 one obtains from (A.2) with s ∈ (0, 1) that c − a − b = s > 0) and hence the asymptotic behavior of y j,s(z, x), j = 1, 2, as x 0 and xπ is dominated by x (1−2s)∕2 and (πx)(1−2s)∕2, respectively. However, the analogous statement fails for \(y_{j,s}^{\prime }(z,x)\), j = 1, 2, as, taking into account (A.5), the analog of the 2nd condition in (A.4), namely, Re[c + 1 − (a + 1) − (b + 1)] > 0, is not fulfilled (in this case (A.2) with s ∈ (0, 1) yields [c + 1 − (a + 1) − (b + 1)] = s − 1 < 0). The situation is similar for the first two F(⋅ ,  ⋅ ;  ⋅ ;x) for y 1,s(z, x) in (A.3) as x → π∕2 as in this case the two F(⋅ ,  ⋅ ;  ⋅ ;1) exist. Even though for y 2,s(z, x) in (A.3) the two F(⋅ ,  ⋅ ;  ⋅ ;1) do not exist individually, the limit of each term does exist due to the multiplication by the factor \(\cos {}(x)\). To see this, one can instead consider the limit (cf. [51, no. 15.4.23])

$$\displaystyle \begin{aligned} \lim_{z\to1^-}\dfrac{F(a,b;c;z)}{(1-z)^{c-a-b}}=\dfrac{\Gamma(c)\Gamma(a+b-c)}{\Gamma(a)\Gamma(b)},\quad c \in{\mathbb{C}} \backslash \{ - {\mathbb{N}}_0\}, \; \text{Re}(c-a-b) < 0, \end{aligned} $$
(A.6)

which through the appropriate change of variable reveals that the connection formula for y 2,s(z, x) as x → π∕2 approaches 0 as expected from evaluating y 2,s(z, π∕2) in (A.2). But once again, the analog of the 2nd condition in (A.4), namely, Re[c + 1 − (a + 1) − (b + 1)] > 0, fails for the four F′(⋅ ,  ⋅ ;  ⋅ ;x) in (A.3) as x → π∕2. ◇

Similarly, by Abramowitz and Stegun [1, Eq. 15.3.10] one obtains for the remaining case s = 0,

$$\displaystyle \begin{aligned} &y_{1,0}(z,x)=\dfrac{\pi^{1/2}[\sin (x)]^{1/2}}{\Gamma\big(\big[(1/2) + z^{1/2}\big]\big/2\big)\Gamma\big(\big[(1/2) - z^{1/2}\big]\big/2\big)} \notag \\ & \hspace{1.7cm} \times \sum_{n=0}^\infty \dfrac{\big(\big[(1/2) + z^{1/2}\big]\big/2\big)_n\big(\big[(1/2) - z^{1/2}\big]\big/2\big)_n}{(n!)^2} \big[2\psi(n+1) \notag \\ &\hspace{2cm} -\psi\big(n+\big[(1/2) + z^{1/2}\big]\big/2\big)-\psi\big(n+\big[(1/2) - z^{1/2}\big]\big/2\big) \notag \\ & \hspace{2cm} -\text{ln}(\sin^2 (x))\big] [\sin (x)]^{2n}, {} \\ {} &y_{2,0}(z,x)=\dfrac{\pi^{1/2}\cos (x) [\sin (x)]^{1/2}}{2\Gamma\big(\big[(3/2) + z^{1/2}\big]\big/2\big)\Gamma\big(\big[(3/2) - z^{1/2}\big]\big/2\big)} \notag \\ & \hspace{1.7cm} \times \sum_{n=0}^\infty \dfrac{\big(\big[(3/2) + z^{1/2}\big]\big/2\big)_n\big(\big[(3/2) - z^{1/2}\big]\big/2\big)_n}{(n!)^2} \big[2\psi(n+1) \notag \\ & \hspace{2cm} -\psi\big(n+\big[(3/2) + z^{1/2}\big]\big/2\big)-\psi\big(n+\big[(3/2) - z^{1/2}\big]\big/2\big) \notag \\ & \hspace{2cm} - \text{ln}\big(\sin^2 (x)\big)\big][\sin (x)]^{2n}, \notag \\ {} & \hspace{2.15cm} s=0,\; z\in{\mathbb{C}},\; x\in(0,\pi). \notag \end{aligned} $$
(A.7)

Here ψ(⋅) =  Γ(⋅)∕ Γ(⋅) denotes the Digamma function, γ E = −ψ(1) = 0.57721… represents Euler’s constant, and

$$\displaystyle \begin{aligned} (\zeta)_0 =1, \quad (\zeta)_n = \Gamma(\zeta + n)/\Gamma(\zeta), \; n \in {\mathbb{N}}, \quad \zeta \in {\mathbb{C}} \backslash (-{\mathbb{N}}_0), {} \end{aligned} $$
(A.8)

abbreviates Pochhammer’s symbol (see, e.g., [1, Ch. 6]). Direct computation now yields

$$\displaystyle \begin{aligned} \widetilde y_{1,s}(z,0)&=-\widetilde y_{1,s}(z,\pi) \notag \\ &=\dfrac{2\pi^{1/2}\Gamma(1+s)}{\Gamma\big(\big[(1/2) + s + z^{1/2}\big]\big/2\big)\Gamma\big(\big[(1/2) + s - z^{1/2}\big]\big/2\big)}, \notag \\ {} \widetilde y^{\, \prime}_{1,s}(z,0)&=\widetilde y^{\, \prime}_{1,s}(z,\pi)=\dfrac{\pi^{1/2}\Gamma(-s)}{\Gamma\big(\big[(1/2) - s + z^{1/2}\big]\big/2\big)\Gamma\big(\big[(1/2) - s - z^{1/2}\big]\big/2\big)}, \notag \\ {} \widetilde y_{2,s}(z,0)&=\widetilde y_{2,s}(z,\pi)=\dfrac{\pi^{1/2}\Gamma(1+s)}{\Gamma\big(\big[(3/2) + s + z^{1/2}\big]\big/2\big)\Gamma\big(\big[(3/2) + s - z^{1/2}\big]\big/2\big)}, \notag \\ {} \widetilde y^{\, \prime}_{2,s}(z,0)&=-\widetilde y^{\, \prime}_{2,s}(z,\pi) \notag \\ &=\dfrac{\pi^{1/2}\Gamma(-s)}{2\Gamma\big(\big[(3/2) - s + z^{1/2}\big]\big/2\big)\Gamma\big(\big[(3/2) - s - z^{1/2}\big]\big/2\big)}, \notag \\ {} &\hspace{5.7cm} s\in(0,1),\, z\in{\mathbb{C}}, {} \end{aligned} $$
(A.9)
$$\displaystyle \begin{aligned} \widetilde y_{1,0}(z,0)&=-\widetilde y_{1,0}(z,\pi)=\dfrac{2\pi^{1/2}}{\Gamma\big(\big[(1/2) + z^{1/2}\big]\big/2\big)\Gamma\big(\big[(1/2) - z^{1/2}\big]\big/2\big)}, \notag \\ {} \widetilde y^{\, \prime}_{1,0}(z,0)&=\widetilde y^{\, \prime}_{1,0}(z,\pi) \notag \\ & =\dfrac{-\pi^{1/2}\big[2\gamma_E+\psi\big(\big[(1/2) + z^{1/2}\big]\big/2\big)+\psi\big(\big[(1/2) - z^{1/2}\big]\big/2\big)\big]}{\Gamma\big(\big[(1/2) + z^{1/2}\big]\big/2\big)\Gamma\big(\big[(1/2) - z^{1/2}\big]\big/2\big)}, \notag \\ {} \widetilde y_{2,0}(z,0)&=\widetilde y_{2,0}(z,\pi)=\dfrac{\pi^{1/2}}{\Gamma\big(\big[(3/2) + z^{1/2}\big]\big/2\big)\Gamma\big(\big[(3/2) - z^{1/2}\big]\big/2\big)}, \notag \\ {} \widetilde y^{\, \prime}_{2,0}(z,0)&=-\widetilde y^{\, \prime}_{2,0}(z,\pi) \notag \\ & =\dfrac{-\pi^{1/2}\big[2\gamma_E+\psi\big(\big[(3/2) + z^{1/2}\big]\big/2\big)+\psi\big(\big[(3/2) - z^{1/2}\big]\big/2\big)\big]}{2\Gamma\big(\big[(3/2) + z^{1/2}\big]\big/2\big)\Gamma\big(\big[(3/2) - z^{1/2}\big]\big/2\big)},\notag \\ {} &\hspace{6.7cm} s=0,\, z\in{\mathbb{C}}. {} \end{aligned} $$
(A.10)

In particular, one obtains

(A.11)

since

$$\displaystyle \begin{aligned} W(y_{1,s}(z,\,\cdot), y_{2,s}(z,\,\cdot)) = \widetilde y_{1,s}(z,0)\widetilde y^{\, \prime}_{2,s}(z,0) - \widetilde y^{\, \prime}_{1,s}(z,0)\widetilde y_{2,s}(z,0) = - 1, {} \end{aligned} $$
(A.12)

with the generalized boundary values given by (A.9), (A.10). To prove (A.12) one recalls Euler’s reflection formula (cf. [1, no. 6.1.17])

$$\displaystyle \begin{aligned} \Gamma(z)\Gamma(1-z)=\dfrac{\pi}{\sin{}(\pi z)}, \quad z \in {\mathbb{C}} \backslash {\mathbb{Z}}, \end{aligned} $$
(A.13)

and hence concludes that

$$\displaystyle \begin{aligned} & \Gamma\big(\big[(1/2) + \varepsilon s \pm z^{1/2}\big]\big/2\big)\Gamma\big(\big[(3/2) - \varepsilon s \mp z^{1/2}\big]\big/2\big) \\ & \quad =\dfrac{\pi}{\sin\big(\pi\big[(1/2) + \varepsilon \pm z^{1/2}\big]\big/2\big)}, \quad \varepsilon \in \{-1,1\}. \end{aligned} $$
(A.14)

Thus one computes for s ∈ (0, 1),

$$\displaystyle \begin{aligned} & W(y_{1,s}(z,\,\cdot), y_{2,s}(z,\,\cdot)) \notag \\ & \quad =-[\sin{}(\pi s)]^{-1}\big\{\sin\big(\pi\big[(1/2)+s + z^{1/2}\big]\big/2\big)\sin\big(\pi\big[(1/2)+s - z^{1/2}\big]\big/2\big) \notag \\ & \quad \hspace{2.05cm}-\sin\big(\pi\big[(1/2)-s + z^{1/2}\big]\big/2\big)\sin\big(\pi\big[(1/2)-s - z^{1/2}\big]\big/2\big) \big\} \notag\\ & \quad =-[2\sin{}(\pi s)]^{-1}\{-\cos{}(\pi[(1/2)+s ])+\cos{}(\pi[(1/2)-s ]) \} = -1. \end{aligned} $$
(A.15)

For the case s = 0, one recalls the reflection formula for the Digamma function (cf. [1, no. 6.3.7])

$$\displaystyle \begin{aligned} \psi(1-z)-\psi(z)=\pi\cot{}(\pi z), \quad z \in {\mathbb{C}} \backslash {\mathbb{Z}}, \end{aligned} $$
(A.16)

and applies trigonometric identities to obtain W(y 1,0(z, ⋅), y 2,0(z, ⋅)) = −1. The singular Weyl–Titchmarsh–Kodaira function m 0,0,s(z) is then uniquely determined (cf. [30, Eq. (3.18)] and [29] for background on m-functions) to beFootnote 2

$$\displaystyle \begin{aligned} m_{0,0,s}(z)= - \frac{\widetilde\theta_{0,s} (z,\pi)}{\widetilde\phi_{0,s} (z,\pi)}, \quad s\in[0,1),\; z\in\rho(T_{s,F}). \end{aligned} $$
(A.17)

Direct calculation once again yields

$$\displaystyle \begin{aligned} m_{0,0}(z)&= -\dfrac{\widetilde y^{\, \prime}_{2,s}(z,0)\widetilde y_{1,s}(z,\pi)-\widetilde y^{\, \prime}_{1,s}(z,0)\widetilde y_{2,s}(z,\pi)}{2\widetilde y_{1,s}(z,0)\widetilde y_{2,s}(z,0)} \notag \\ {} &=\begin{cases} \dfrac{\pi\Gamma(-s)}{4\Gamma(1+s)}\bigg[\dfrac{\Gamma\big(\big[(3/2) + s + z^{1/2}\big]\big/2\big)\Gamma\big(\big[(3/2) + s - z^{1/2}\big]\big/2\big)}{\Gamma\big(\big[(3/2) - s + z^{1/2}\big]\big/2\big)\Gamma\big(\big[(3/2) - s - z^{1/2}\big]\big/2\big)} \\ {} \qquad \quad \ \ +\dfrac{\Gamma\big(\big[(1/2) + s + z^{1/2}\big]\big/2\big)\Gamma\big(\big[(1/2) + s - z^{1/2}\big]\big/2\big)}{\Gamma\big(\big[(1/2) - s + z^{1/2}\big]\big/2\big)\Gamma\big(\big[(1/2) - s - z^{1/2}\big]\big/2\big)}\bigg], \\ \hspace{7.55cm} s\in(0,1),\\ {} -\big[4\gamma_E+\psi\big(\big[(1/2) + z^{1/2}\big]\big/2\big)+\psi\big(\big[(1/2) - z^{1/2}\big]\big/2\big) \\ {} \quad \, +\psi\big(\big[(3/2) + z^{1/2}\big]\big/2\big)+\psi\big(\big[(3/2) - z^{1/2}\big]\big/2\big)\big]/4, \quad s=0, \end{cases} \notag \\ &\hspace{7.3cm} z\in\rho(T_{s,F}), \end{aligned} $$
(A.18)

which has simple poles precisely at the simple eigenvalues of T s,F given by

$$\displaystyle \begin{aligned} \sigma(T_{s,F})=\big\{[(1/2)+s+n]^2\big\}_{n\in{\mathbb{N}}_0},\quad s\in[0,1). \end{aligned} $$
(A.19)

Remark A.1.2

For the limit point case at both endpoints, that is, for s ∈ [1, ), the solutions y j,s(z, ⋅) in (A.2) remain linearly independent and also the connection formulas (A.3) remain valid for \(s \in [1,\infty ) \backslash {\mathbb {N}}\). Moreover, employing once again (A.4) and (A.5) one verifies that the two F(⋅ ,  ⋅ ;  ⋅ ;1) as well as F′(⋅ ,  ⋅ ;  ⋅ ;1) are well defined in (A.2) and hence for s ∈ [1, ), the asymptotic behavior of y j,s(z, x) and \(y_{j,s}^{\prime }(z,x)\), j = 1, 2, as x 0 and xπ is dominated by x (1−2s)∕2 and x −(1+2s)∕2 and (πx)(1−2s)∕2 and (πx)−(1+2s)∕2, respectively. Since in connection with (A.3) one has c − a − b = ±1∕2, independently of the value of s ∈ (0, ), the situation described in Remark A.1.1 for (A.3) and s ∈ (0, 1) applies without change to the current case s ∈ [1, ).

Actually, some of these failures (as x → π∕2 in \(y_{j,s}^{\prime }(z,x)\), j = 1, 2) are crucial for the following elementary reason: The function

(A.20)

(i.e., the analog of the second part of y 1,s(z, ⋅) on the right-hand side in (A.3)) generates an L 2((0, π);dx)-element near x = 0, π, and hence if this function and its x-derivative were locally absolutely continuous in a neighborhood of x = π∕2 (the only possibly nontrivial point in the interval (0, π)), the self-adjoint maximal operator T s,max, s ∈ [1, ), would have eigenvalues for all \(z \in {\mathbb {C}}\), an obvious contradiction. ◇

Because of the subtlety pointed out in Remark A.1.2 we omit further details on the limit point case s ∈ [1, ) and refer to [23, Sect. 4], instead. In particular, [23, Theorem 4.1 b)] extends (A.19) to s ∈ [1, ) and hence one actually has

$$\displaystyle \begin{aligned} \sigma(T_{s,F})=\big\{[(1/2)+s+n]^2\big\}_{n\in{\mathbb{N}}_0}, \quad s\in[0,\infty). \end{aligned} $$
(A.21)

B.1 Remarks on Hardy-Type Inequalities

In this appendix we recall a Hardy-type inequality useful in Sect. 2.

Introducing the differential expressions α s, \(\alpha ^+_s\) (cf. (3.28) for s = 0),

$$\displaystyle \begin{aligned} \alpha_s = \frac{d}{dx} - \frac{s + (1/2)}{x}, \quad \alpha_s^+ = - \frac{d}{dx} - \frac{s + (1/2)}{x}, \quad s \in [0,\infty), \; x \in (0,\pi), {} \end{aligned} $$
(B.1)

one confirms that

$$\displaystyle \begin{aligned} \alpha_s^+ \alpha_s = \omega_s = - \frac{d^2}{dx^2} + \frac{s^2 - (1/4)}{x^2}, \quad s \in [0,\infty), \; x \in (0,\pi). {} \end{aligned} $$
(B.2)

Following the Hardy inequality considerations in [24, 38, 40], one obtains the following basic facts.

Lemma B.1.1

Suppose f  AC loc((0, π)), α s f  L 2((0, π);dx) for some \(s \in {\mathbb {R}}\) , and 0 < r 0 < r 1 < π < R < ∞. Then,

$$\displaystyle \begin{aligned} & \int_{r_0}^{r_1} dx \, |(\alpha_s f)(x)|{}^2 \geq s^2 \int_{r_0}^{r_1} dx \, \frac{|f(x)|{}^2}{x^2} + \frac{1}{4} \int_{r_0}^{r_1} dx \, \frac{|f(x)|{}^2}{x^2 [\mathit{\text{ln}}(R/x)]^2} {} \\ & \hspace{3.25cm} - s \frac{|f(x)|{}^2}{x}\bigg|{}_{x = r_0}^{r_1} - \frac{|f(x)|{}^2}{2 x [\mathit{\text{ln}}(R/x)]}\bigg|{}_{x = r_0}^{r_1}, \end{aligned} $$
(B.3)
(B.4)
$$\displaystyle \begin{aligned} & \int_{r_0}^{r_1} dx \, |(\alpha_s f)(x)|{}^2 = \int_{r_0}^{r_1} dx \, \bigg[|f'(x)|{}^2 + \big[s^2 - (1/4)\big] \frac{|f(x)|{}^2}{x^2}\bigg] {} \\ & \hspace{3.25cm} - [s + (1/2)] \frac{|f(x)|{}^2}{x}\bigg|{}_{x = r_0}^{r_1} \geq 0. \end{aligned} $$
(B.5)

If s = 0,

$$\displaystyle \begin{aligned} \int_0^{r_1} dx \, \frac{|f(x)|{}^2}{x^2 [\mathit{\text{ln}}(R/x)]^2} < \infty, \quad \lim_{x \downarrow 0} \frac{|f(x)|}{[x \mathit{\text{ln}}(R/x)]^{1/2}} = 0. {} \end{aligned} $$
(B.6)

If s ∈ (0, ), then

$$\displaystyle \begin{aligned} \int_0^{r_1} dx \, |f'(x)|{}^2 < \infty, \quad \int_0^{r_1} dx \, \frac{|f(x)|{}^2}{x^2} < \infty, \quad \lim_{x \downarrow 0} \frac{|f(x)|}{x^{1/2}} = 0, {} \end{aligned} $$
(B.7)

in particular,

$$\displaystyle \begin{aligned} f \widetilde \chi_{[0,r_1/2]} \in H^1_0((0,r_1)), \end{aligned} $$
(B.8)

where

$$\displaystyle \begin{aligned} \widetilde \chi_{[0,r/2]} (x) = \begin{cases} 1, & x \in [0,r/4], \\ 0, & x \in [3r/4,r], \end{cases} \quad \widetilde \chi_{[0,r/2]} \in C^{\infty}([0,r]), \; r \in (0,\infty). \end{aligned} $$
(B.9)

Proof

Relations (B.4) and (B.5) are straightforward (yet somewhat tedious) identities; together they yield (B.3). The 1st relation in (B.6) is an instant consequence of (B.3), so is the fact that limx↓0|f(x)|2∕[xln(Rx)] exists. Moreover, since [xln(Rx)]−1 is not integrable at x = 0, the 1st relation in (B.6) yields liminfx↓0|f(x)|2∕[xln(Rx)] = 0, implying the 2nd relation in (B.6).

Finally, if s ∈ (0, ), then inequality (B.3) implies the 2nd relation in (B.7); together with α s f ∈ L 2((0, π);dx), this yields the 1st relation in (B.7). By inequality (B.3), limx↓0|f(x)|2x exists, but then the second relation in (B.7) yields liminfx↓0|f(x)|2x = 0 and hence also limx↓0|f(x)|2x = 0. □

We also recall the following elementary fact.

Lemma B.1.2

Suppose f  H 1((0, r)) for some r ∈ (0, ). Then, for all x ∈ (0, r),

(B.10)

Thus, if f  H 1((0, r)), then \(\int _0^r dx \, |f(x)|{ }^2/x^2 < \infty \) if and only if f(0) = 0, that is, if and only if \(f \widetilde \chi _{[0,r/2]} \in H^1_0((0,r))\).

In particular, if f  H 1((0, r)) and f(0) = 0, then actually,

$$\displaystyle \begin{aligned} \lim_{x \downarrow 0} \frac{|f(x)|}{x^{1/2}} = 0. {} \end{aligned} $$
(B.11)

Proof

Since (B.10) is obvious, we briefly discuss the remaining assertions in Lemma B.2. If f ∈ H 1((0, r)) and \(\int _0^r dx \, |f(x)|{ }^2/x^2 < \infty \), then identity (B.5) for s < −1∕2, that is,

$$\displaystyle \begin{aligned} & \int_{r_0}^{r_1} dx \, |(\alpha_s f)(x)|{}^2 = \int_{r_0}^{r_1} dx \, \bigg[|f'(x)|{}^2 + \big[s^2 - (1/4)\big] \frac{|f(x)|{}^2}{x^2}\bigg] {} \\ & \hspace{3.25cm} - [s + (1/2)] \frac{|f(x)|{}^2}{x}\bigg|{}_{x = r_0}^{r_1} \geq 0, \quad s < - 1/2, \end{aligned} $$
(B.12)

yields the existence of limx↓0|f(x)|2x. Since \(\int _0^r dx \, |f(x)|{ }^2/x^2 < \infty \) implies that liminfx↓0|f(x)|2x = 0, one concludes that limx↓0|f(x)|2x = 0 and hence f behaves locally like an \(H^1_0\)-function in a right neighborhood of x = 0. Conversely, if f(0) = 0, then \(\int _0^r dx \, |f(x)|{ }^2/x^2 < \infty \) by Hardy’s inequality as discussed in Remark 3.4. Relation (B.11) is clear from (B.10) with f(0) = 0. □

Remark B.1.3

(i) If f ∈ AC loc((0, r)) and f′∈ L p((0, r);dx) for some p ∈ [1, ), the Hölder estimate analogous to (B.10),

$$\displaystyle \begin{aligned} |f(d) - f(c)| = \bigg|\int_c^d dt \, f'(t) \bigg| \leq |d-c|{}^{1/p'} \bigg(\int_c^d dt \, |f'(t)|{}^p\bigg)^{1/p}, \\ (c,d) \subset (0,r), \; \frac{1}{p} + \frac{1}{p'} = 1, \end{aligned} $$
(B.13)

implies the existence of limc↓0 f(c) = f(0) and limd↑r f(d) = f(r) and hence yields f ∈ AC([0, r]).

(ii) The fact that f ∈ H 1((0, r)) and \(\int _0^r dx \, |f(x)|{ }^2/x^2 < \infty \) implies \(f \widetilde \chi _{[0,r/2]} \in H^1_0((0,r))\) is a special case of a multi-dimensional result recorded, for instance, in [19, Theorem 5.3.4].

(iii) When replacing x −2, x ∈ (0, r), by \([\sin {}(x)]^{-2}\), x ∈ (0, π), due to locality, the considerations in Lemmas 5.1 and 5.2 at the left endpoint x = 0 apply of course to the right interval endpoint π. ◇

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gesztesy, F., Pang, M.M. ., Stanfill, J. (2021). Bessel-Type Operators and a Refinement of Hardy’s Inequality. In: Gesztesy, F., Martinez-Finkelshtein, A. (eds) From Operator Theory to Orthogonal Polynomials, Combinatorics, and Number Theory . Operator Theory: Advances and Applications, vol 285. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-75425-9_9

Download citation

Publish with us

Policies and ethics