Skip to main content
Log in

Development of Image Reconstruction Algorithms for Few-View Computed Tomography at RFNC–VNIITF: History, State of the Art, and Prospects

  • RADIATION METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

In the last 20 yr, RFNC–VNIITF has developed a linear-induction-accelerator-based radiography complex capable of reconstructing the 3D inner structures of hydrodynamic objects. The effort aims to develop not only a unique X-ray source but also the algorithms which could help accurately reconstruct tomograms of objects from as small views as possible. The paper briefly describes the history of algorithms developed for few-view computed tomography (FVCT) on the basis of algebraic reconstruction techniques (ARTs) and their modifications. The most effective modifications of ARTs are presented along with examples demonstrating their use for reconstruction of hydrodynamic medium models. In conclusion, key thrust areas in the development of algorithms for FVCT of fast hydrodynamic processes are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kozlovskii, V.N., Informatsiya v impul’snoi rentgenografii (Information in Pulsed Radiography), Snezhinsk: RFNC–VNIITF, 2006.

  2. Herman, G.T., Fundamentals of Computerized Tomography: Image Reconstruction from Projections, London: Springer, 2009, 2nd ed.

    Book  Google Scholar 

  3. Nielsen, K., Design and performance of the DARTH second axis accelerator, Proc. IEEE Int. Pulsed Power Conf., Chicago, 2011, pp. 1048–1051. https://doi.org/10.1109/PPC.2011.6191640

  4. Ong, M.M., Kihara, R., Zentler, J.M., Kreitzer, B.R., and DeHope, W.J., Estimating the reliability of Lawrence Livermore National Laboratory (LLNL) flash x-ray (FXR) machine, Proc. IEEE Int. Pulsed Power Plasma Sci. Conf., Albuquerque, 2007, vol. 2, pp. 1078–1081. https://doi.org/10.1109/PPPS.2007.4345985

  5. Pang, T.F., AWE multi-axis radiographic facility: A review of 3D-reconstructions from limited data, Bayesian Interface Maximum Entropy Methods Sci. Eng. 20th Int. Workshop. AIP Conf. Proc., Gif-sur-Yvette, 2001, vol. 568, pp. 521–530. https://doi.org/10.1063/1.1381914

  6. Dzitko, H., Mouillet, M., Georges, A., and Gouin, B., Reliability study of the AIRIX accelerator over a functioning period of ten years (2000–2010), Proc. Part. Accel. Conf., New York, 2011, pp. 1882–1884.

  7. Kaizhi, Z., Long, W., Hong, L., Zhiyong, D., Wendou, W., Wenwei, Z., Meng, W., Jin, L., Anming, Y., Yutong, X., Sifu, C., Huacen, W., Guangsen, D., Jinshui, S., Linwen, Z., Jianjun, D., and Bonan, D., Dragon-I injector based on the induction voltage adder technique, Phys. Rev. ST Accel. Beams., 2006, vol. 9, no. 8, p. 080401. https://doi.org/10.1103/PhysRevSTAB.9.080401

    Article  CAS  Google Scholar 

  8. Logachev, P.V., Kuznetsov, G.I., Korepanov, A.A., Akimov, A.V., Shiyankov, S.V., Starostenko, D.A., and Fat’kin, G.A., LIU-2 linear induction accelerator, Instrum. Exp. Tech., 2013, vol. 56, no. 6, pp. 672–679. https://doi.org/10.1134/S0020441213060195

    Article  Google Scholar 

  9. Akimov, A., Bak, P., Batrakov, A., Chernitsa, A., Khrenkov, S., Nikitin, O., Pavlov, O., Zhelezkin, D., and Zhivankov, K., Development and testing of high-voltage cells for 2 kA, 20 MeV linear induction accelerator, Proc. IEEE Int. Conf. Pulsed Power (Brighton, 2017), pp. 1–3. https://doi.org/PPC.2017.8291336

    Book  Google Scholar 

  10. Akimov, A., Bak, P., Egorychev, M., Kolesnikov, P., Logunov, V., and Nikitin, O., PULSE forming networks development for a 60–380 ns pulsed power supply for 2 kA 20 MeV linear induction accelerator, Proc. IEEE Int. Conf. Pulsed Power (Brighton, 2017), pp. 1–3. https://doi.org/PPC.2017.8291090

    Book  Google Scholar 

  11. Fatkin, G., Baluev, A., Bekhtenev, E., Kotov, E., Ottmar, A., Pavlenko, A., Panov, A., Senchenko, A., Serednyakov, S., Batrakov, A., Macheret, Ya., Mamkin, V., Shtro, K., Selivanov, A., Selivanov, P., and Singatulin, S., LIA-20 control system project, Proc. 16th Int. Conf. Accel. Large Exp. Cont. Syst. (Barcelona, 2018), pp. 1485–1488. https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA052

  12. Panov, A. and Fatkin, G., LIA-20 experiment protection system, Proc. 16th Int. Conf. Accel. Large Exp. Cont. Syst. (Barcelona, 2018), pp. 660–662. https://doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA103

  13. Batrakov, A.M., Vasilev, M.Yu., Kotov, E.S., and Shtro, K.S., A precision high voltage pulse divider, Instrum. Exp. Tech., 2020, vol. 63, no. 2, pp. 188–198. https://doi.org/10.1134/S0020441220020074

    Article  Google Scholar 

  14. Bak, P.A., Batrakov, A.M., Bekhtenev, E.A., Vasiliev, M.Yu., Zhivankov, K.I., Kotov, E.S., Macheret, Ya.M., Pavlenko, A.V., Pavlov, O.A., Senchenko, A.I., Serednyakov, S.S., Fat’kin, G.A., and Shtro, K.S., Waveform monitoring complex for accelerator LIA-20, Instrum. Exp. Tech., 2021, vol. 64, no. 2, pp. 216–229. https://doi.org/10.1134/S0020441221020019

    Article  CAS  Google Scholar 

  15. News of the scientific portal “Atomic Energy 2.0.” https://www.atomicenergy.ru/news/2022/03/25/123117. Cited March 25, 2022.

  16. Gordon, R., Bender, R., and Herman, G.T., Algebraic reconstruction techniques (ART) for threedimensional electron microscopy and X-ray photography, J. Theor. Biol., 1970, vol. 29, no. 3, pp. 471–481. https://doi.org/10.1016/0022-5193(70)90109-8

    Article  CAS  Google Scholar 

  17. Gilbert, P., Iterative methods for the three-dimensional reconstruction of an object from projections, J. Theor. Biol., 1972, vol. 36, no. 1, pp. 105–117. https://doi.org/10.1016/0022-5193(72)90180-4

    Article  CAS  Google Scholar 

  18. Andersen, A.H. and Kak, A.C., Simultaneous algebraic reconstruction technique (SART): A superior implementation of the ART algorithm, Ultrason. Imaging, 1984, vol. 6, no. 1, pp. 81–94. https://doi.org/10.1177/016173468400600107

    Article  CAS  Google Scholar 

  19. Sauer, K.D. and Bouman, C.A., A local update strategy for iterative reconstruction from projections, IEEE Trans. Signal Process., 1993, vol. 41, no. 2, pp. 534–548. https://doi.org/10.1109/78.193196

    Article  Google Scholar 

  20. Bouman, C.A. and Sauer, K.D., A unified approach to statistical tomography using coordinate descent optimization, IEEE Trans. Image Process., 1996, vol. 5, no. 3, pp. 480–492. https://doi.org/10.1109/83.491321

  21. Erdogan, H. and Fessler, J.A., Ordered subsets algorithms for transmission tomography, Phys. Med. Biol., 1999, vol. 44, no. 11, pp. 2835–2851. https://doi.org/10.1088/0031-9155/44/11/311

    Article  CAS  Google Scholar 

  22. Thibault, J.-B., Sauer, K.D., Bouman, C.A., and Hsieh, J.A., Three-dimensional statistical approach to improved image quality for multislice helical CT, Med. Phys., 2007, vol. 34, no. 11, pp. 4526–4544. https://doi.org/10.1118/1.2789499

    Article  Google Scholar 

  23. Yu, Z., Thibault, J.-B., Bouman, C.A., Sauer, K.D., and Hsieh, J.A., Fast model-based X-ray CT reconstruction using spatially nonhomogeneous ICD optimization, IEEE Trans. Image Process., 2011, vol. 20, no. 1, pp. 161–175. https://doi.org/10.1109/TIP.2010.2058811

    Article  Google Scholar 

  24. Donoho, D.L., Compressed sensing, IEEE Trans. Inf. Theory, 2006, vol. 52, no. 4, pp. 1289–1306. https://doi.org/10.1109/TIT.2006.871582

    Article  Google Scholar 

  25. Candès, E.J., Romberg, J., and Tao, T., Stable signal recovery from incomplete and inaccurate measurements, Commun. Pure Appl. Math., 2006, vol. 59, no. 8, pp. 1207–1223. https://doi.org/10.1088/0266-5611/23/3/008

    Article  Google Scholar 

  26. Yu, H. and Wang, G., Compressed sensing based interior tomography, Phys. Med. Biol., 2009, vol. 54, no. 9, pp. 2791–2805. https://doi.org/10.1088/0031-9155/54/9/014

    Article  Google Scholar 

  27. Beck, A. and Teboulle, M., A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2009, vol. 2, no. 1, pp. 183–202. https://doi.org/10.1137/080716542

    Article  Google Scholar 

  28. Chang, M., Li, L., Chen, Z., Xiao, Y., Zhang, L., and Wang, G., A few-view reweighted sparsity hunting (FRESH) method for CT image reconstruction, J. X-Ray Sci. Technol., 2013, vol. 21, no. 2, pp. 161–176. https://doi.org/10.3233/XST-130370

    Article  Google Scholar 

  29. Sun, Y. and Tao, J., Iterative reconstruction from few views by l0-norm optimization, Chin. Phys. B, 2014, vol. 23, no. 7, p. 078703. https://doi.org/10.1088/1674-1056/23/7/078703

    Article  Google Scholar 

  30. Storath, M., Weinmann, A., Frikel, J., and Unser, M., Joint image reconstruction and segmentation using the Potts model, Inverse Probl., 2015, vol. 31, no. 2, p. 025003. https://doi.org/10.1088/0266-5611/31/2/025003

    Article  Google Scholar 

  31. Jin, K.H., McCann, M.T., Froustey, E., and Unser, M., Deep convolutional neural network for inverse problems in imaging, IEEE Trans. Med. Imaging, 2017, vol. 26, no. 9, pp. 4509–4522. https://doi.org/10.1109/TIP.2017.2713099

    Article  Google Scholar 

  32. Arridge, S.R., Maass, P., Öktem, O., and Schönlieb, C.-B., Solving inverse problems using data-driven models, Acta Numerica, 2019, vol. 28, pp. 1–174. https://doi.org/10.1017/S0962492919000059

    Article  Google Scholar 

  33. Konovalov, A.B., Mogilenskikh, D.V., Vlasov, V.V., and Kiselev, A.N., Algebraic reconstruction and post-processing in incomplete data computed tomography: from X-rays to laser beams, in Vision Systems: Applications, Obinata, G., Dutta, A., Eds., Vienna: I-Tech Educ. Publ., 2007, pp. 487–518. https://doi.org/10.5772/5003

  34. Konovalov, A.B., Mogilenskikh, D.V., Kozlov, E.A., Vlasov, V.V., Kiselev, A.N., Kovalev, E.V., Zakharov, M.N., Povyshev, V.N., and Stavrietskii, V.I., Few-view gamma tomography used to monitor scabbing and shear fracture in a spherical iron shell compressed by explosion, Russ. J. Nondestr. Test., 2008, vol. 44, no. 1, pp. 15–24. https://doi.org/10.1134/S1061830908010026

    Article  CAS  Google Scholar 

  35. Vlasov, V.V., Konovalov, A.B., and Uglov, A.S., An a priori information based algorithm for artifact preventive reconstruction in few-view computed tomography, Proc. IEEE Int. Symp. Comm. Cont. Signal Proces. (Roma, 2012), p. 042. https://doi.org/10.1109/ISCCSP.2012.6217778

  36. Konovalov, A.B. and Vlasov, V.V., Spatial resolution analysis for few-views discrete tomography based on MART-AP algorithm, ISRN Signal Process., 2013, vol. 2013, p. 356291. https://doi.org/10.1155/2013/356291

    Article  Google Scholar 

  37. Vlasov, V.V., Konovalov, A.B., and Uglov, A.S., Few-views image reconstruction with SMART and allowance for contrast structure shadows, Proc. Int. Conf. Comput. Anal. Imag. Patterns, 2015, Part I. Lect. Notes Comput. Sci., 2015, vol. 9256, pp. 667–677. https://doi.org/10.1007/978-3-319-23192-1_56

  38. Vlasov, V.V., Konovalov, A.B., and Kolchugin, S.V., Hybrid algorithm for few-views computed tomography of strongly absorbing media: Algebraic reconstruction, TV-regularization, and adaptive segmentation, J. Electron. Imaging, 2018, vol. 27, no. 4, p. 043006. https://doi.org/10.1117/1.JEI.27.4.043006

    Article  Google Scholar 

  39. Vlasov, V.V., Konovalov, A.B., and Kolchugin, S.V., Joint image reconstruction and segmentation: Comparison of two algorithms of few-view tomography, Comput. Opt., 2019, vol. 43, no. 6, pp. 1008–1020. https://doi.org/10.18287/2412-6179-2019-43-6-1008-1020

    Article  Google Scholar 

  40. Vlasov, V.V. and Konovalov, A.B., Minimizing the number of views in few-view computed tomography: A deep learning approach, Proc. IEEE Int. Conf. Ind. Eng. Appl. Manuf. (Sochi, 2022), pp. 1063–1067. https://doi.org/10.1109/ICIEAM54945.2022.9787247

  41. Rangayyan, R.M. and Gordon, R., Streak preventive image reconstruction with ART and adaptive filtering, IEEE Trans. Med. Imaging, 1982, vol. MI-1, no. 3, pp. 173–178. https://doi.org/10.1109/TMI.1982.4307569

    Article  Google Scholar 

  42. Konovalov, A.B., Kiselev, A.N., and Vlasov, V.V., Spatial resolution in few-view computed tomography using algebraic reconstruction techniques, Pattern Recognit. Imag. Anal., 2006, vol. 16, no. 2, pp. 249–255. https://doi.org/10.1134/S105466180602012X

    Article  Google Scholar 

  43. Lisin, A.A., Mogilenskikh, D.V., and Pavlov, I.V., Nonlinear color interpretation of physical processes, in Recent Progress in Computational Sciences and Engineering, Simos, T. and Maroulis, G., Eds., London: CRC Press, 2006, pp. 337–340. https://doi.org/10.1201/9780429070655-83

  44. Mogilenskikh, D.V. and Pavlov, I.V., Color interpolation algorithms in visualizing results of numerical simulations, in Visualization and Imaging in Transport Phenomena, Sideman, S. and Landesberg, A., Eds., New York: New York Acad. Sci., 2002, vol. 972, Part I, pp. 43–52. https://doi.org/j.1749-6632.2002.tb04551.x

    Google Scholar 

  45. Discrete Tomography: Foundations, Algorithms and Applications, Herman, G.T. and Kuba, A., Eds., Boston: Birkhäuser, 1999.

    Google Scholar 

  46. Hanson, K.M., Bayesian and related methods in image reconstruction from incomplete data, in Image Recovery: Theory and Applications, Stark, H., Ed., Orlando: Academic, 1987, pp. 79–125.

    Google Scholar 

  47. Mehnert, A. and Jackway, O., An improved seeded region growing algorithm, Pattern Recognit. Lett., 1997, vol. 18, no. 10, pp. 1065–1071. https://doi.org/10.1016/S0167-8655(97)00131-1

    Article  Google Scholar 

  48. Mazouzi, S. and Batouche, M., Range image segmentation by randomized region growing and Bayesian edge regularized, J. Comput. Sci., 2007, vol. 3, no. 5, pp. 310–317. https://doi.org/10.3844/jcssp.2007.310.317

    Article  Google Scholar 

  49. Ronneberger, O., Fischer, P., and Brox, T., U-Net: Convolutional networks for biomedical image segmentation, Proc. Int. Conf. Med. Imag. Comput. Comput. Assisted Intervention, 2015, Part III. Lect. Notes Comput. Sci., 2015, vol. 9351, pp. 234–241. https://doi.org/10.1007/978-3-319-24574-4_28

  50. Ravishankar, S., Ye, J.C., and Fessler, J.A., Image reconstruction: from sparsity to data-adaptive methods and machine learning, Proc. of IEEE, 2020, vol. 108, no. 1, pp. 86–109. https://doi.org/10.1109/JPROC.2019.2936204

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. B. Konovalov, V. V. Vlasov or A. N. Kiselev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konovalov, A.B., Vlasov, V.V. & Kiselev, A.N. Development of Image Reconstruction Algorithms for Few-View Computed Tomography at RFNC–VNIITF: History, State of the Art, and Prospects. Russ J Nondestruct Test 58, 455–465 (2022). https://doi.org/10.1134/S1061830922060067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830922060067

Keywords:

Navigation