Skip to main content
Log in

Development of Vibrothermography as a Method for Nondestructive Testing of Products Made of Polymer Structural Materials with the Use of Forced Mechanical Vibrations

  • THERMAL METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

One of the promising methods for thermal nondestructive testing of products made of polymer structural materials (PSMs) is vibrothermography, i.e., when the thermal excitation of a test object is performed using mechanical vibrations at sonic or ultrasonic frequency and the change in the temperature field of the object is monitored by thermography methods. The paper considers the testing procedure and presents the results of thermographic studies during vibration strength tests of PSM products with impact damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Feigenbaum, Yu.M., Dubinskii, S.V., Bozhevalov, D.G., Sokolov, Yu.S., Metelkin, E.S., Mikolaichuk, Yu.A., and Shapkin, V.S., Obespechenie prochnosti kompozitnykh aviatsionnykh konstruktsii s uchetom sluchainykh ekspluatatsionnykh udarnykh vozdeistvii (Ensuring the Strength of Composite Aircraft Structures Taking into Account Accidental Operational Shock Effects), Moscow: Tekhnosphera, 2018.

  2. Dubinskii, S.V., Sevast’yanov, F.S., Safonov, A.A., Abaimov, S.G., Rozin, N.V., and Fedulov, B.N., Method for calculating the strength properties of structures taking into account the formation of micro and macropores during vacuum infusion, Kompoz. Nanostrukt., 2016, vol. 8, no. 3, pp. 151–159.

    Google Scholar 

  3. Dubinskii, S., Feygenbaum, Yu., Senik, V., and Metelkin, E., A study of accidental impact scenarios for composite wing damage tolerance evaluation, Aeronaut. J., 2019, vol. 123, no. 1268, pp. 1724–1739.

    Article  Google Scholar 

  4. Vavilov, V.P., Infrakrasnaya termographiya i teplovoi kontrol’ (Infrared Thermography and Thermal Testing), Moscow: Spektr, 2009.

  5. Chernyshev, S.L., Zichenkov, M.Ch., Golovan, V.I., Zaitsev, A.M., Kaz’min, E.A., Kovalev, I.E., Kornilov, A.B., Kornilov, G.A., Smotrov, A.V., Chernyavskii, A.A., and Shustrov, A.O., Features of thermal nondestructive testing of impact damage to products made of polymer composite materials, Russ. J. Nondestr. Test., 2020, vol. 56, no. 9, pp. 706–717.

    Article  CAS  Google Scholar 

  6. Meola, C., Boccardi, S., Boffa, N.D., Ricci, F., and Carlomagno, G.M., Infrared thermography to evaluate impact damaging of composites, ECCM16—16th Eur. Conf. Compos. Mater., (Seville, 2014).

  7. Meola, C., Boccardi, S., Carlomagno, G.M., Boffa, N.D., Ricci, F., Simeoli, G., and Russo, P., Impact damaging of composites through online monitoring and non-destructive evaluation with infrared thermography, 16 th Natl. Conf. Nondestr. Test. Monit. Diagn., (Milan, 2015). https://doi.org/10.1016/j.ndteint.2016.10.004

  8. Roche, J.-M., Balageas, D., Lamboul, B., Bai, G., Passilly, F., Mavel, A., and Grail, G., Passive and active thermography for in situ damage monitoring in woven composites during mechanical testing, QNDE, (Denver, 2012).

  9. Meola, C., Boccardi, S., and Carlomagno, G.M., Infrared thermography for online monitoring of glass epoxy under impact and quasi-static bending, Appl. Sci., 2018, no. 8, p. 301.

  10. Xiao, Y., White, R.G., and Aglietti, G.S., An experimental characterization of the acoustic fatigue endurance of GLARE and comparison with that of CFRP, Compos. Struct., 2005, vol. 68, pp. 455–470.

    Article  Google Scholar 

  11. Xiao, Y., White, R.G., and Aglietti, G.S., Comparison of structural response and fatigue endurance of aircraft flap-like box structures subjected to acoustic loading, J. Acoust. Soc. Am., 2005, vol. 117, no. 5, pp. 2820–2834.

    Article  CAS  Google Scholar 

  12. Dubinskii, S., Fedulov, B., Feygenbaum, Yu., Gvozdev, S., and Metelkin, E., Experimental evaluation of surface damage relaxation effect in carbon-fiber reinforced epoxy panels impacted into stringer, Composites, Part B, 2019, vol. 176, article ID 107258.

    Article  CAS  Google Scholar 

  13. Vavilov, V.P., Chulkov, A.O., Dubinskii, S.V., Burleigh, D., Shpilnoi, V.Yu., Derusova, D.A., and Zhvyrblia, V.Yu., Nondestructive testing of composite T-joints by TNDT and other methods, Polym. Test., 2021, vol. 94, article ID 107012.

    Article  CAS  Google Scholar 

  14. Dubinskii, S.V., Sevastyanov, F.S., Golubev, A.Yu., Denisov, S.L., Kostenko, V.M., and Zharenov, I.A., A computational and experimental study of the effect of vibroacoustic loads on the structural performance of composite skin-stringer joint, Acoust. Phys., 2019, vol. 65, no. 4, pp. 359–368.

    Article  Google Scholar 

  15. Technique for Testing Aircraft Structures under Acoustic Loading. Design Guide. Book 4, vol. III, no. 9, 1981.

  16. ESDU 93027. Methods of testing for endurance of structural elements using simulated acoustic loading, 1993.

  17. Solodov, I., Dillenz, A., and Kreutzbruck, M., A new mode of acoustic NDT via resonant air-coupled emission, J. Appl. Phys., 2017, vol. 121, article ID 245101. https://doi.org/10.1063/1.4985286

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-29-13008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Kornilov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinskii, S.V., Kaz’min, E.A., Kovalev, I.E. et al. Development of Vibrothermography as a Method for Nondestructive Testing of Products Made of Polymer Structural Materials with the Use of Forced Mechanical Vibrations. Russ J Nondestruct Test 57, 465–475 (2021). https://doi.org/10.1134/S1061830921060073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830921060073

Keywords:

Navigation