Skip to main content
Log in

Testing Electrophysical Parameters of Metamaterials by the Method of Surface Electromagnetic Waves

  • RADIO-WAVE TECHNIQUES
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

The development of metamaterials has led to the search and selection of effective methods for radio wave nondestructive testing of their electrophysical parameters. The existing approaches to testing, based on the recovery of the effective electrophysical parameters of metamaterials from the reflection and transmission coefficients of an electromagnetic wave, have low reliability and do not provide the local inspection of the parameters. In this paper, we propose for the first time a radio-wave method for local inspection of complex dielectric and magnetic permeabilities, as well as the thickness of flat-layered samples of metamaterials on a metal substrate using surface electromagnetic waves of the microwave range. The method is based on solving the inverse problem of determining the effective electrophysical parameters of a metamaterial from the frequency dependence of the complex attenuation coefficient of the field of a surface electromagnetic wave excited in the sample under study. In this case, the electrophysical parameters of the metamaterial are represented in the form of parametric frequency functions in accordance with the Drude–Lorentz dispersion models, and the solution of the inverse problem is reduced to minimizing the objective function constructed from the discrepancy between the experimental and calculated theoretical values of the attenuation coefficients of the surface electromagnetic wave field on a grid of discrete frequencies. The structure of the measuring complex that implements the proposed inspection method is presented. A sample of a flat-layered metamaterial based on SRR elements with a region of negative refraction in the frequency range of 10.06–10.64 GHz was investigated for the numerical and experimental verification of the method. Experimental verification has shown that the local values of the effective electrophysical parameters of the studied metamaterial differ from the calculated ones by no more than 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Veselago, V.G., Electrodynamics of substances with simultaneously negative values of ε and μ, Usp. Fiz. Nauk, 1967, vol. 92, p. 517.

    Article  CAS  Google Scholar 

  2. Lagarkov, A.N., Kisel, V.N., Sarychev, A.K., and Semenenko, V.N., Electrophysics and electrodynamics of metamaterials, Teplofiz. Vys. Temp., 2010, vol. 48, no. 6, pp. 1031—1048.

    Google Scholar 

  3. Lagarkov, A.N., Kisel, V.N., Sarychev, A.K., and Semenenko, V.N., Electrophysics and electrodynamics of metamaterials. http://www.itae.ru/science/ topics/No.1%20(metamaterials).pdf. Accessed October 31, 2020.

  4. Vendik, I.B. and Vendik, O.G., Metamaterials and their application in microwaves: A review, Tech. Phys., 2013, vol. 58, no. 1, pp. 1–24.

    Article  CAS  Google Scholar 

  5. Gulyaev, Yu.V., Lagarkov, A.N., and Nikitov, S.A., Metamaterials: Fundamental research and application prospects, Herald Russ. Acad. Sci., 2008, vol. 78, no. 5, pp. 438–457.

    Article  Google Scholar 

  6. Slyusar, V., Metamaterials in antenna technology: Basic principles and results, Pervaya Milya, 2010, nos. 3–4, pp. 44–60.

  7. Balabukha, N.P., Bashirin, A.A., and Semenenko, V.N., The effect of backward radiation of electromagnetic waves by a waveguide structure made of metamaterial, JETP Lett., 2009, vol. 89, no. 10, pp. 593–598.

    Article  Google Scholar 

  8. Ming Huang and Jingjing Yang, Microwave Sensor Using Metamaterials, Wave Propagation, Petrin A., Ed., IntechOpen, 2011, print on demand. https://doi.org/10.5772/14459

  9. Mitrokhin, V.N., Ryzhenko, D.S., and Tyagunov, V.A., Experimental studies of microwave devices containing metamaterials, Phys. Wave Process. Radio Eng. Syst., 2011, vol. 14, no. 3, pp. 43–53.

    Google Scholar 

  10. Pendry, J.B., Holden, A.J., Robbins, D.J., and Stewart, W.J., Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microwave Theory Tech., 1999, vol. 47, no. 11, pp. 2075–2084. https://doi.org/10.1109/22.798002

    Article  Google Scholar 

  11. Ivanova, V.I., et al., Development of a broadband radio-absorbing coating with high performance properties, J. Radio Electron., 2016, no. 7, pp. 1–23.

  12. Simovskiy, K.R., On material parameters of metamaterials (a review), Opt. Spektrosk., 2009, vol. 107, no. 5, pp. 766–793.

    Google Scholar 

  13. Hongsheng Chen, Jingjing Zhang, Yang Bai, Yu Luo, Lixin Ran, Qin Jiang, and Jin Au Kong, Experimental retrieval of the effective parameters of metamaterials based on a waveguide method, Opt. Express, 2006, vol. 14, no. 26, pp. 12944–12949. https://doi.org/10.1364/OE.14.012944

    Article  Google Scholar 

  14. Krupka, J., Derzakowski, K., and Hartnett, J.G., Measurements of the complex permittivity and the complex permeability of low and medium loss isotropic and uniaxially anisotropic metamaterials at microwave frequencies, Meas. Sci. Technol., 2009, vol. 20, no. 10, article ID 105702. https://doi.org/10.1088/0957-0233/20/10/105702

    Article  CAS  Google Scholar 

  15. Ran, L., Huangfu, J., Chen, H., Zhang, X., Chen, K., Grzegorczyk, T., and Kong, J., Experimental study on several left-handed metamaterials, Prog. Electromagn. Res., 2005, vol. 51, pp. 249–279. https://doi.org/10.2528/PIER04040502

    Article  Google Scholar 

  16. Zhaofeng Li, Koray Aydin, and Ekmel Ozbay, Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients, Phys. Rev. E, 2009, vol. 79, article ID 026610. https://doi.org/10.1103/PhysRevE.79.026610

    Article  CAS  Google Scholar 

  17. Smith, D.R., Schultz, S., Markos, P., and Soukoulis, C.M., Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients, Phys. Rev. B, 2002, vol. 65, article ID 195104. https://doi.org/10.1103/PhysRevB.65.195104

    Article  CAS  Google Scholar 

  18. Smith, D.R., Vier, D.C., Koschny, T., and Soukoulis, C.M., Electromagnetic parameter retrieval from inhomogeneous metamaterials, Phys. Rev. E, 2005, vol. 71, article ID 036617. https://doi.org/10.1103/PhysRevE.71.036617

    Article  CAS  Google Scholar 

  19. Shelby, R. A., Smith, D. R., and Schultz, S., Experimental Verification of a Negative Index of Refraction, Science, 2001, vol. 292, no. 5514, pp. 77–79. https://doi.org/10.1126/science.1058847

    Article  CAS  Google Scholar 

  20. Ugur Cem Hasar, Joaquim J. Barroso, Cumali Sabah, Yunus Kaya, and Mehmet Ertugrul, Differential uncertainty analysis for evaluating the accuracy of S-parameter retrieval methods for electromagnetic properties of metamaterial slabs, Opt. Express, 2012, vol. 20, no. 27, pp. 29002–29022. https://doi.org/10.1364/OE.20.029002

    Article  Google Scholar 

  21. Smith, D.R., Gollub, J., Mock, J.J., Padilla, W.J., and Schuring, D., Calculation and measurement of bianisotropy in a split ring resonator metamaterial, J. Appl. Phys., 2006, vol. 100, article ID 024507. https://doi.org/10.1063/1.2218033

    Article  CAS  Google Scholar 

  22. Islam Sikder Sunbeam, Faruque Mohammad Rashed Iqbal, and Islam Mohammad Tariqul, The design and analysis of a novel split-H-shaped metamaterial for multi-band microwave applications, Materials, 2014, no. 7(7), pp. 4994–5011. https://doi.org/10.3390/ma7074994

  23. Simovski, C., Belov, P.A., and He, S., Backward wave region and negative material parameters of a structure formed by lattices of wires and split-ring resonators, IEEE Trans. Antennas Propag., 2003, vol. 51, pp. 2582–2345. https://doi.org/10.1109/TAP.2003.817554

    Article  Google Scholar 

  24. Nader, E. and Ziolokowski, R. W., Metamaterials. Physics and Engineering Explorations, Nader Engheta, Ed., New York: Wiley, 2006.

  25. Lubkowski, G., Schuhmann, R., and Weiland, T., Extraction of effective metamaterial parameters by parameter fitting of dispersive models, Microwave Opt. Technol. Lett., 2007, vol. 49, no. 2, pp. 285–288. https://doi.org/10.1002/mop.22105

    Article  Google Scholar 

  26. Lagarkov, A.N., Matytsin, S.M., Rozanov, K.N., and Sarychev, A.K., Dielectric properties of fiber-filled composites, J. Appl. Phys., 1998, vol. 84, no. 7, pp. 3806–3814. https://doi.org/10.1063/1.368559

    Article  CAS  Google Scholar 

  27. Andreev, M.V., Borul’ko, V.F., and Drobakhin, O.O., On the implementation of the method of quasisolutions in determining the parameters of the layers of dielectric layered structures, Defektoskopiya, 1997, no. 3, pp. 39–53.

  28. Andreev, M.V., Borul’ko, V.F., and Drobakhin, 0.0., Experimental studies of the method of quasisolutions in determining the parameters of the layers of dielectric layered structures, Defektoskopiya, 1997, no. 4, pp. 70–78.

  29. Antropov, O.S. and Drobakhin, O.O., Increase in the resolution of the reflection coefficient Fourier-transform method by spectrum extrapolation based on the method of the minimum duration principle, Russ. J. Nondestr. Test., 2009, vol. 45, no. 5, pp. 347–354.

    Article  Google Scholar 

  30. Walter, C.H., Traveling Wave Antennas, New York: McGraw-Hill, 1965.

    Google Scholar 

  31. Vaganov, R.B., Korshunov, I.P., Korshunova, E.N., and Oleinikov, A.D., Experimental study of the structure of a surface electromagnetic wave in an anisotropically conducting tape, Radiotekh. Elektron., 2013, vol. 58, no. 2, pp. 136–142.

    Google Scholar 

  32. Kaz’min, A.I. and Fedyunin, P.A., Reconstruction of the structure of electrophysical parameters of multilayer dielectric materials and coatings from the frequency dependence of the attenuation coefficient of the field of a surface electromagnetic wave, Izmer. Tekh., 2019, no. 9, pp. 39–45. https://doi.org/10.32446/0368-1025it.2019-9-39-45.

  33. Kaz’min, A.I. and Fedyunin, P.A., Testing for defects in multilayer dielectric materials by the microwave method, Zavod. Lab. Diagn. Mater., 2020, vol. 86, no. 2, pp. 37–43. https://doi.org/10.26896/1028-6861-2020-86-2-37-43

    Article  Google Scholar 

  34. Kaz’min, A.I. and Fedyunin, P.A., Estimating the extent of exfoliation of dielectric and magnetodielectric coatings with surface microwaves, Russ. J. Nondetsr. Test., 2020, vol. 56, no. 9, pp. 727–741. https://doi.org/10.31857/S0130308220090055

    Article  Google Scholar 

  35. Ufimtsev, P.Ya. and Ling, R.T., New results for the properties of TE surface waves in absorbing layers, IEEE Trans. Antennas Propag., 2001, vol. 49, no. 10, pp. 1445–1452. https://doi.org/10.1109/8.954933

    Article  Google Scholar 

  36. Shevchenko, V.V., Basic modes of a symmetric planar waveguide made of metamaterial, Radiotekh. Elektron., 2010, vol. 55, no. 9, pp. 1052–1055.

    Google Scholar 

  37. Manenkov, A.B., Dispersion characteristics of modes of a waveguide made of metamaterial, Radiotekh. Elektron., 2012, vol. 57, no. 9, pp. 968–977.

    Google Scholar 

  38. Mahmoud, S. F. and Viitanen, A. J., Surface wave character on a slab of metamaterial with negative permittivity and permeability, Prog. Electromagn. Res., 2005, vol. 51, pp. 127–137. https://doi.org/10.2528/PIER03102102

    Article  Google Scholar 

  39. Baccarelli, P., Burghignoli, P., Frezza, F, Galli, A., Lampariello, P., Lovat, G., and Paulotto, S., Fundamental modal properties of surface waves on metamaterial grounded slabs, IEEE Trans. Microwave Theory Tech., 2005, vol. 53, no. 4, pp. 1431–1442. https://doi.org/10.1109/TMTT.2005.845208

    Article  Google Scholar 

  40. Felsen, L. and Markowitz, N., Radiation and Scattering of Waves, New York: Wiley–IEEE Press, 1978.

    Google Scholar 

  41. Shu, W. and Song, J.-M., Complete mode spectrum of a grounded dielectric slab with double negative metamaterials, Prog. Electromagn. Res., 2006, vol. 65, pp. 103–123. https://doi.org/10.2528/PIER06081601

    Article  Google Scholar 

  42. Kim Ki Young, Sno Young Ki, Tae Heung-Sik, and Lee Jeong-Hae, Guided mode propagations of grounded double-positive and double-negative metamaterial slabs with arbitrary material indexes, J. Korean Phys. Soc., 2006, vol. 49, no. 2, pp. 577–584.

    Google Scholar 

  43. Shabunin, S., Excitations of space and surface waves by patch and slot antennas, Proc. Eur. Conf. Antennas Propag., 2006. https://doi.org/10.1109/eucap.2006.4585090

  44. Guido, V., Jackson, D.R., and Galli, A., Fundamental properties of surface waves in lossless stratified structures, Proc. R. Soc., 2010, vol. 466, pp. 2447–2469. https://doi.org/10.1098/rspa.2009.0664

  45. Frezza, F. and Tedeschi, N., Electromagnetic inhomogeneous waves at planar boundaries: Tutorial, J. Opt. Soc. Am. A, 2015, vol. 32, no. 8, pp. 1485–1501. https://doi.org/10.1364/JOSAA.32.001485

    Article  Google Scholar 

  46. Brekhovskikh, L.M., Volny v sloistykh sredakh (Waves in Layered Media), Moscow: Nauka, 1973.

    Google Scholar 

  47. Chen Zhuozhu and Shen Zhongxiang, Surface waves propagating on grounded anisotropic dielectric slab, Appl. Sci., 2018, no. 8(1), p. 102. https://doi.rog/10.3390/app8010102

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Kaz’min or P. A. Fedyunin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaz’min, A.I., Fedyunin, P.A. Testing Electrophysical Parameters of Metamaterials by the Method of Surface Electromagnetic Waves. Russ J Nondestruct Test 57, 320–336 (2021). https://doi.org/10.1134/S1061830921040070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830921040070

Keywords:

Navigation