Skip to main content
Log in

Methodological Principles for Determining Electrophysical Parameters of Materials and Coatings with a Complex Internal Structure Using Surface Electromagnetic Waves

  • RADIO-WAVE TECHNIQUES
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

A formalized description of the methods of surface electromagnetic waves used to determine the electrophysical and geometric parameters of materials and coatings with a complex internal structure (multilayer and anisotropic materials and coatings, metamaterials, and materials and coatings with defects) is presented. The developed principles of using surface electromagnetic waves for measuring purposes make it possible, within the framework of a unified methodological approach, to determine the electrophysical and geometric parameters of any types of flat-layered materials and coatings with a complex internal structure in a single measurement cycle under the same conditions (placement on a metal substrate, structural composite material, etc.). Depending on the type of material or coating under study, the set of electrophysical parameters to be evaluated, and the accuracy of their determination, the developed approaches allow one to select the required set of physically measured characteristics of the field of surface electromagnetic waves, the bandwidth of measurements, and their number. Experimental studies of two- and three-layer dielectric coatings have shown that with a measurement bandwidth of 9–13 GHz, estimation of the layer with dielectric permittivity of at most 6% and the layer with a thicknesses of at most 5.5% is provided with a confidence level of 0.95.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Lagar’kov, A.N., Fedorenko, A.I., Kisel’, V.N., et al., Topical problems of stealth technology, Inst. Theor. Appl. Electrodyn., Russ. Acad. Sci. http://www.itae.ru/science/topics/№4%20(stealth).pdf. Cited June 19, 2020.

  2. Lagar’kov, A.N. and Pogosyan, M.A., Fundamental and applied problems of stealth technologies, Vestn. Ross. Akad. Nauk, 2003, vol. 73, no. 9, pp. 779–787.

    Google Scholar 

  3. Decree of the President of the Russian Federation of December 1, 2016, No. 642, “On the Strategy for Scientific and Technological Development of the Russian Federation.” http://static.kremlin.ru/media/acts/files/0001201612010007.pdf. Cited January 12, 2022.

  4. Kazantseva, N.E., Rivkina, N.G., and Chmutin, I.A., Promising materials for absorbers of electromagnetic waves in the microwave range, Radiotekh. Elektron., 2003, vol. 48, no. 2, pp. 196–207.

    CAS  Google Scholar 

  5. Lagar’kov, A.N., Matitsin, S.M., Rozanov, K.N., and Sarichev, A.K., Dielectric properties of fiber-filled composites, J. Appl. Phys., 1998, vol. 84, no. 7, pp. 3806–3814. https://doi.org/10.1063/1.368559

    Article  Google Scholar 

  6. Dankov Plamen, I., Experimental Characterization of Positive and Negative Dielectric Constants and Artificial Anisotropy of Meta-materials in the Microwave Range, J. Phys.: Conf. Ser., 2020, vol. 1598, p. 012002. https://doi.org/10.1088/1742-6596/1598/1/012002

    Article  CAS  Google Scholar 

  7. Dankov Plamen, I., Dielectric Anisotropy of Modern Microwave Substrates, Microwave and Millimeter Wave Technologies from Photonic Bandgap Devices to Antenna and Applications, Minin, I., Ed., IntechOpen, 2010. https://doi.org/10.5772/9061

  8. Bogdanov, Yu., Kochemasov, V., and Khasyanov, E., Foil dielectrics – how to choose the best option for RF/microwave printed circuit boards. Part 1, Pechatn. Montazh, 2013, no. 2, pp. 156–168.

  9. Mikhailin, Yu.A., Spetsialnie polimernie kompozitsionnie materiali (Special Polymer Composite Materials), St. Petersburg: Nauchn. Osnovy Tekhnol., 2008.

  10. Lagar’kov, A.N., Kisel’, V.N., Sarichev, A.K., and Semenenko, V.N., Electrophysics and electrodynamics of metamaterials, Teplofiz. Vys. Temp., 2010, vol. 48, no. 6, pp. 1031–1048.

    Google Scholar 

  11. Lagar’kov, A.N., Kisel’, V.N., Sarichev, A.K., and Semenenko, V.N., Electrophysics and electrodynamics of metamaterials, Institute of Theoretical and Applied Electrodynamics of the Russian Academy of Sciences: Official Website. http://www.itae.ru/science/topics/№1%20(metamaterials).pdf. Cited October 31, 2020.

  12. Vendik, I.B. and Vendik, O.G., Metamaterials and their application in microwaves: A review, Tech. Phys., 2013, vol. 58, pp. 1–24.

    Article  CAS  Google Scholar 

  13. Slyusar, V., Metamaterials in antenna technology: Basic principles and results, Pervaya Milya, 2010, nos. 3–4, pp. 44–60.

  14. Ivanova, V.I., Kibets, S.G., Krasnolobov, I.I., Lagar’kov, A.N., Politiko, A.A., Semenenko, V.N., and Chis-tyaev, V.A., Development of a broadband radio-absorbing coating with high performance properties, Zh. Radio-elektron., 2016, no. 7, pp. 1–23.

  15. Andreev, M.V., Borul’ko, V.F., and Drobakhin, O.O., On the implementation of the method of quasisolutions in determining the parameters of the layers of dielectric layered structures, Defektoskopiya, 1997, no. 3, pp. 39–53.

  16. Andreev, M.V., Borul’ko, V.F., and Drobakhin, O.O., Experimental studies of the method of quasisolutions in determining the parameters of the layers of dielectric layered structures, Defektoskopiya, 1997, no. 4, pp. 70–78.

  17. Antropov, O.S. and Drobakhin, O.O., Increase in the resolution of the reflection coefficient Fourier-transform method by spectrum extrapolation based on the method of the minimum duration principle, Russ. J. Nondestr. Test., 2009, vol. 45, no. 5, pp. 347–354.

    Article  Google Scholar 

  18. Baskov, K.M., Politiko, A.A., Semenenko, V.N., Chistyaev, V.A., Akimov, D.I., and Krasnolobov, I.I., Radio wave control of the parameters of samples of multilayer walls of radio-transparent shelters, Zh. Radioelektron., 2019, no. 11. https://doi.org/10.30898/1684-1719.2019.11.12

  19. Semenenko, V.N., Chistyaev, V.A., Politiko, A.A., and Baskov, K.M., Test stand for measuring the free-space electromagnetic parameters of materials over an ultrawide range of microwave frequencies, Meas. Tech., 2019, vol. 62, no. 2, pp. 161–166.

    Article  Google Scholar 

  20. Brekhovskikh, L.M., Volny v sloistykh sredakh (Waves in Layered Media), Moscow: Nauka, 1973.

  21. Grinev, A.Yu., Temchenko, V.S., and Bagno, D.V., Radari podpoverkhnostnogo zondirovaniya. Monitoring i diagnostika sred i ob’yektov (Subsurface Sounding Radars. Monitoring and Diagnostics of Environments and Objects), Moscow: Radiotekhnika, 2013.

  22. Simovski, C.R., Material parameters of metamaterials (A review), Opt. Spectrosc., 2009, vol. 107, pp. 726–753.

    Article  CAS  Google Scholar 

  23. Smith, D.R., Schultz, S., Markos, P., and Soukoulis, C.M., Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients, Phys. Rev. B., 2002, vol. 65, p. 195104. https://doi.org/10.1103/PhysRevB.65.195104

    Article  CAS  Google Scholar 

  24. Smith, D.R., Vier, D.C., Koschny, Th., and Soukoulis, C.M., Electromagnetic parameter retrieval from inhomogeneous metamaterials, Phys. Rev. E, 2005, vol. 71, p. 036617. https://doi.org/10.1103/PhysRevE.71.036617

    Article  CAS  Google Scholar 

  25. Shelby, R.A., Smith, D.R., and Schultz, S., Experimental verification of a negative index of refraction, Science, 2001, vol. 292, no. 5514, pp. 77–79. https://doi.org/10.1126/science.1058847

    Article  CAS  Google Scholar 

  26. Smith David, R., Gollub Jonah, Mock Jack, J., Padilla Willie, J., and Schuring David, Calculation and measurement of bianisotropy in a split ring resonator metamaterial, J. Appl. Phys., 2006, vol. 100, p. 024507. https://doi.org/10.1063/1.2218033

    Article  CAS  Google Scholar 

  27. Ran, L., Huangfu, J., Chen, H., Zhang, X., Chen, K., Grzegorczyk, T., and Kong, J., experimental study on several left-handed metamaterials, Prog. Electromagn. Res., 2005, vol. 51, pp. 249–279. https://doi.org/10.2528/PIER04040502

    Article  Google Scholar 

  28. Hyde IV, M.W., Havrilla, M.J., and Bogle, A.E., Nondestructive determination of the permittivity tensor of a uniaxial material using a two-port clamped coaxial probe, IEEE Trans. Microwave Theory Tech., 2016, vol. 64, no. 1, pp. 239–246. https://doi.org/10.1109/TMTT.2015.2502242

    Article  Google Scholar 

  29. Crowgey, B.R., Crowgey Benjamin, R., Tuncer Ozgur, Tang Junyan, Rothwell Edward, J., Shanker, B., Kempel Leo, C., and Havrilla Michael, J., Characterization of biaxial anisotropic material using a reduced aperture waveguide, Trans. Instrum. Meas., 2013, vol. 62, no. 10, pp. 2739–2750. https://doi.org/10.1109/TIM.2013.2259752

    Article  Google Scholar 

  30. Boybay, M.S. and Ramahi, O.M., Open-ended coaxial line probes with negative permittivity materials, Trans. Antennas Propag., 2011, vol. 59, no. 5, pp. 1765–1769. https://doi.org/10.1109/TAP.2011.2123056

    Article  Google Scholar 

  31. Li Zhen, Haigh Arthur, Soutis Constantinos, Gibson Andrew, and Sloan Robin, A simulation-assisted nondestructive approach for permittivity measurement using an open-ended microwave waveguide, J. Nondestr. Eval., 2019, nos. 37, 39. https://doi.org/10.1007/s10921-018-0493-1

  32. Kaz’min, A.I. and Fedyunin, P.A., Evaluating the accuracy of reconstruction of the electrical and geometric parameters of multilayer dielectric coatings by a multifrequency radio-wave method for slow surface electromagnetic waves, Meas. Tech., 2020, vol. 63, no. 8, pp. 645–652. https://doi.org/10.1007/s11018-020-01834-9

    Article  Google Scholar 

  33. Chernyshov, V., Kaz’min, A., and Fedyunin, P., Testing electrophysical parameters of multilayer dielectric and magnetodielectric coatings by the method of surface electromagnetic waves, 3rd Int. Conf. Control Syst. Math. Model. Autom. Energ. Effic. (SUMMA), 2021, pp. 372–377. https://doi.org/10.1109/SUMMA53307.2021.9632211.

  34. Kaz’min, A.I. and Fedyunin, P.A., Testing electrophysical parameters of metamaterials by the method of surface electromagnetic waves, Russ. J. Nondestr. Test., 2021, vol. 57, no. 4, pp. 320–336. https://doi.org/10.1134/S1061830921040070

  35. Kaz’min, A.I., Fedyunin, P.A., and Fedyunin, D.P., Evaluation of permittivity and thickness gaging for anisotropic dielectric coatings by the method of surface electromagnetic waves, Russ. J. Nondestr. Test., 2021, vol. 57, no. 6, pp. 500–516. https://doi.org/10.1134/S1061830921060085

  36. Kaz’min, A.I. and Fedyunin, P.A., Estimating the extent of exfoliation of dielectric and magnetodielectric coatings with surface microwaves, Russ. J. Nondestr. Test., 2020, vol. 56, no. 9, pp. 727–741. https://doi.org/10.1134/S1061830920090053

  37. Kaz’min, A.I. and Fedyunin, P.A., Control of defects in multilayer dielectric materials by microwave method, Zavod. Lab., Diagn. Mater., 2020, vol. 86, no. 2, pp. 37–43.

    Google Scholar 

  38. Fedyunin, P.A., Kaz’min, A.I., and Kiryanov, O.E., Algorithms for monitoring and evaluating inhomogeneities in radio-absorbing coatings, Kont. Diagn., 2010, no. 7 (145), pp. 60–65.

  39. Walter, C.H., Traveling Wave Antennas, New York: McGraw-Hill, 1965.

    Google Scholar 

  40. Vaganov, R.B., Korshunov, I.P., Korshunova, E.N., and Oleinikov, A.D., Experimental study of the structure of a surface electromagnetic wave in an anisotropically conductive tape, Radiotekh. Elektron., 2013, vol. 58, no. 2, pp. 136–142.

    Google Scholar 

  41. Felsen, L. and Markuvits, N., Radiation and Scattering of Waves, New York: Prentice-Hall, 1973, vol. 1.

    Google Scholar 

  42. Data Sheet RO3000® Series Circuit Materials RO3003™, RO3006™, RO3010™, and RO3035™ High Frequency Laminates. https://www.rogerscorp.com.

Download references

ACKNOWLEDGEMENTS

The author thanks his scientific adviser for the doctoral program, Doctor of Technical Sciences, Prof. P.A. Fedyunin, for help in writing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Kaz’min.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaz’min, A.I. Methodological Principles for Determining Electrophysical Parameters of Materials and Coatings with a Complex Internal Structure Using Surface Electromagnetic Waves. Russ J Nondestruct Test 58, 205–220 (2022). https://doi.org/10.1134/S1061830922030032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830922030032

Keywords:

Navigation