Skip to main content
Log in

Identification of materials in X-Ray inspections of objects by the dual-energy method

  • X-Ray Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

The state-of-the-art, application experience, and trends in further perfection of the dualenergy method as used in digital-radiography and X-ray computed-tomography systems intended for nondestructive testing and screening of objects are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Doucette, Ed., Digital radiography: the basics, Mater. Eval., 2005, vol. 63, no. 10, pp. 1021–1022.

    Google Scholar 

  2. Charnock, P., Connolly, P.A., Hughes, D., and Moores, B.M., Evaluation and testing of computed radiography systems, Radiat. Prot. Dosim., 2005, vol. 114, nos. 1–3, pp. 201–207.

    Article  Google Scholar 

  3. Nedavnii, O.I. and Udod, V.A., Digital radiographic systems today—state of the art (a review), Russ. J. Nondestr. Test., 2001, vol. 37, no. 8, pp. 576–591.

    Article  Google Scholar 

  4. Udod, V.A., Van, Ya., Osipov, S.P., Chakhlov, S.V., Usachev, E.Yu., Lebedev, M.B., and Temnik, A.K., Stateof- the art and development prospects of digital radiography systems for nondestructive testing, evaluation, and inspection of objects: a review, Russ. J. Nondestr. Test., 2016, vol. 52, no. 9, pp. 492–503.

    Article  Google Scholar 

  5. Kamalov, I.I., Promising trends in digital radiography, Vestn. Sovrem. Klin. Med., 2011, vol. 4, no. 2, pp. 44–46.

    Google Scholar 

  6. Kanter, B.M., Investigation and development of methods and tools for digital radiographic medical diagnostics, Extended Abstract of Doctoral Dissertation, Moscow, 2000.

    Google Scholar 

  7. Kovalev, A.V., Antiterrorist inspection, Kontrol’. Diagn., 2014, no. 3, pp. 89–92.

    Article  Google Scholar 

  8. Macdonald, R.D.R., Design and implementation of a dual-energy X-ray imaging system for organic material detection in an airport security application, Proc. SPIE—Int. Soc. Opt. Eng., 2001, vol. 4301, pp. 31–41.

    Google Scholar 

  9. Park, J.S. and Kim, J.K., Calculation of effective atomic number and normal density using a source weighting method in a dual energy X-ray inspection system, J. Korean Phys. Soc., 2011, vol. 59, no. 4, pp. 2709–2713.

    Article  Google Scholar 

  10. Klimenov, V.A., Osipov, S.P., and Temnik, A.K., Identification of the substance of a test object using the dualenergy method, Russ. J. Nondestr. Test., 2013, vol. 49, no. 11, pp. 642–649.

    Article  Google Scholar 

  11. Chen, X.L., Chen, L., Huo, M.C., Yang, L.R., Dong, M.W., Kong, W.W., Yang X.-Y., Xue, K., Li, Y.Q., Li, G.Q., and Zhao, L., EEC Appl. No. 2458408, MPK G01V 5/00, Dual-energy X-ray body scanning device and image processing method, Beijing Zhongdun Anmin Anal. Technol. Co Ltd, First Res. Inst. Minist. Public Secur. PRC no. 11167491; appl. May 25, 2005.2011; publ. May 30, 2012.

    Google Scholar 

  12. Gil, Y., Oh, Y., Cho, M., and Namkung, W., Radiography simulation on single-shot dual-spectrum X-ray for cargo inspection system, Appl. Radiat. Isot., 2011, vol. 69, no. 2, pp. 389–393.

    Article  Google Scholar 

  13. Osipov, S.P., Temnik, A.K., and Chakhlov, S.V., The effects of physical factors on the quality of the dual highenergy identification of the material of an inspected object, Russ. J. Nondestr. Test., 2014, vol. 50, no. 8, pp. 491–498.

    Article  Google Scholar 

  14. Shchetinkin, S.A., Chakhlov, S.V., and Usachev, E.Yu., Using the dual-energy digital-radiography method in a portable X-ray TV system, Kontrol’. Diagn., 2006, no. 2, pp. 49–52.

    Google Scholar 

  15. Malyshev, V.P., Sidorov, A.V., Klinovskiy, P.O., Smekalkin, V.S., and Efremov, D.V., The IDK-6/9MeV linear electron accelerator and its application in the customs inspection system, RuPAC 2012 Contrib. Proc. RuPAC 2012—23rd Russ. Part. Accel. Conf., p. 549–550.

  16. Alvarez, R.E. and Macovski, A., Energy-selective reconstructions in X-ray computerized tomography, Phys. Med. Biol., 1976, vol. 21, pp. 733–744.

    Article  Google Scholar 

  17. Brooks, R.A., A quantitative theory of the Hounsfield unit and its application to dual energy scanning, J. Comput. Assist. Tomog., 1977, vol. 1, pp. 487–493.

    Article  Google Scholar 

  18. Lehman, L.A., Alvarez, R.E., Macovski, A., Brody, W.R., Pelc, N.J., Riederer, S.J., and Hall, A.L., Generalized image combinations in dual KVP digital radiography, Med. Phys., 1981, vol. 8, pp. 659–667.

    Article  Google Scholar 

  19. Mashkovich, V.P., Zashchita ot ioniziruyushchikh izluchenii: Spravochnik. 3-e izd., pererab. i dop (Radiation Protection: a Handbook), Moscow: Energoatomizdat, 1982.

    Google Scholar 

  20. http://www.ippe.ru/podr/abbn/libr/gdfe.php.

  21. Alvarez, R. and Macovski, A., Noise and dose in energy dependence computerized tomography, Proc. SPIE— Int. Soc. Opt. Eng., 1976, vol. 96, pp. 131–137.

    Google Scholar 

  22. Ying, Zh., Naidu, R., and Crawford, C.R., Dual energy computed tomography for explosive detection, J. X-Ray Sci. Technol., 2006, vol. 14, pp. 235–256.

    Google Scholar 

  23. Nemets, O.F. and Gofman, Yu.V., Spravochnik po yadernoi fizike (Handbook of Nuclear Physics), Kiev: Naukova Dumka, 1975.

    Google Scholar 

  24. Rukovodstvo po radiatsionnoi zashchite dlya inzhenerov. T. 1 (A Guide on Radiation Protection for Engineers), Broder, D.L., Transl. Ed., Moscow: Atomizdat, 1973, vol. 1.

  25. Klyuev, V.V., Sosnin, F.R., Aerts, V., et al., Rentgenotekhnika: Spravochnik. V 2-kh kn. Kn. 1 (X-Ray Engineering: a Handbook in 2 Books), Klyuev, V.V., Ed., Moscow: Mashinostroenie, 1992, book 1, 2nd ed.

  26. Ali, E.S.M. and Rogers, D.W.O., Functional forms for photon spectra of clinical linacs, Phys. Med. Biol., 2012, no. 57, pp. 31–50.

    Article  Google Scholar 

  27. Gavrish, Yu.N., Berdnikov, Ya.A., Spirin, D.O., Perederii, A.N., Safonov, M.V., and Romanov, I.V., A software complex for reconstructing introscopic images using the dual-energy method, Probl. At. Sci. Technol., 2010, no. 3, pp. 123–125.

    Google Scholar 

  28. Spirin, D.O., Berdnikov, Ya.A., and Gavrish, Yu.N., Principles on introscopy of large-dimensioned cargoes, Nauchno-Tekh. Vedomosti St. Petersburg State Univ. Fiz.-Mat. Nauki, 2010, no. 2 (98), pp. 120–127.

    Google Scholar 

  29. Lazurik, V.T., Rudychev, V.G., and Rudychev, D.V., Computer modeling of inspection of large-sized objects by the dual-energy method, Visn. Kharkiv Nats. Univ., 2009, no. 863, pp. 144–157.

    Google Scholar 

  30. Spirin, D.O., Berdnikov, Ya.A., and Safonov, A.S., Optimization of the discrimination parameter in the dualenergy method, Mater. XV Vseros. konf. “Fundamental’nye issledovaniya i innovatsii v natsional’nykh issledovatel’skikh universitetakh”. T. 1 (Proc. XV All-Russ. Conf. “Fundamental Research and Innovations in National Research Universities”), St. Petersburg: Polytech. Univ., 2011, vol. 1, pp. 44–45.

    Google Scholar 

  31. Spirin, D.O., Berdnikov, A.Ya., Markov, S.I., and Safonov, A.S., Optimization of the discrimination parameter in the dual-energy method, Nauchno-Tekh. Vedomosti St. Petersburg State Univ. Fiz.-Mat. Nauki, 2011, no. 4 (134), pp. 171–176.

    Google Scholar 

  32. Afanas'ev, V.D., Pis’menetskii, S.A., Rudychev, V.G., and Rudychev, D.V., Applying the dual-energy method to discriminate between heavy elements, Visn. Kharkiv Nats. Univ., 2005, no. 664, pp. 56–60.

    Google Scholar 

  33. Svistunov, Yu.A., Vorogushin, M.F., Petrunin, V.I., Sidorov, A.V., Gavrish, Yu.N., and Fialkovskii, A.M., Progress of activities on the development of X-ray and nuclear-physical inspection facilities at D.V. Efremov NIIEFA-Energo, Probl. At. Sci. Technol., 2006, no. 3, pp. 171–173.

    Google Scholar 

  34. Ogorodnikov, S.A., Recognition of materials in radiation customs inspection based on a linear electron accelerator, Cand. Sci. (Eng.) Dissertation, St. Petersburg, 2002.

    Google Scholar 

  35. Petrunin, V.I., Development of the systems of customs and industrial digital radiation inspection of large-sized objects based on linear electron accelerators, Doctoral (Eng.) Dissertation, St. Petersburg, 2002.

    Google Scholar 

  36. Ishkhanov, B.S., Kurilik, A.S., Rudenko, D.S., Stopani, K.A., and Shvedunov, V.I., A multibeam method for determining atomic number, Sb. Tr. VIII mezhvuzovskoi shkoly molodykh spetsialistov “Kontsentrirovannye potoki energii v kosmicheskoi tekhnike, elektronike, ekologii i meditsine” (Proc. VIII Interuniv. Sch. Young Sci. “Concentrated Energy Flows in Space Technology, Electronics, Ecology, and Medicine”), Moscow; Moscow State Univ., November 19–20, 2007, pp. 160–164.

    Google Scholar 

  37. Gorshkov, V.A., Mass absorption coefficient and effective atomic number of a multicomponent object for continuous radiation spectrum, Kontrol’. Diagn., 2015, no. 6, pp. 34–44.

    Article  Google Scholar 

  38. Gorshkov, V.A., Estimating the density of multicomponent objects using continuous-spectrum sources, Kontrol’. Diagn., 2015, no. 7, pp. 16–20.

    Article  Google Scholar 

  39. Chakhlov, S.V. and Osipov, S.P., The dual high-energy method for identifying substances in test objects, Kontrol’. Diagn., 2013, no. 9, pp. 9–17.

    Google Scholar 

  40. Osipov, S.P., Libin, E.E., Chakhlov, S.V., Osipov, O.S., and Shtein, A.M., Parameter identification method for dual-energy X-ray imaging, NDT & E Int., 2015, vol. 76, pp. 38–42.

    Article  Google Scholar 

  41. Naidenov, S.V. and Ryzhikov, V.D., Determining chemical compositions by the method of multi-energy radiography, Tech. Phys. Lett., 2002, vol. 28, no. 5, pp. 357–360.

    Article  Google Scholar 

  42. Ryzhikov, V.D., Opolonin, A.D., Volkov, V.G., Lisetskaya, E.K., Galkin, S.N., and Voronkin, E.F., Threeenergy digital radiography for separating substances with small effective atomic number, Visn. Kharkiv Nats. Univ., 2013, no. 34, pp. 43–51.

    Google Scholar 

  43. Kolkoori, S., Wrobel, N., Deresch, A., Redmer, B., Ewert, U., Dual high-energy X-ray digital radiography for material discrimination in cargo containers, 11th Eur. Conf. Nondestr. Test. (ECNDT 2014), Prague, 2014.

    Google Scholar 

  44. Firsching, M., Nachtrab, F., Mühlbauer, J., and Uhlmann, N., Detection of enclosed diamonds using dual energy X-ray imaging, 18th World Conf. Nondestr. Test., Durban, South Africa, April 16–20, 2012.

    Google Scholar 

  45. Mazoochi, A., Rahmani, F., Davani, F.A., and Ghaderi, R., A novel numerical method to eliminate thickness effect in dual energy X-ray imaging used in baggage inspection, Nucl. Instrum. Methods Phys. Res., Sect. A, 2014, vol. 763, pp. 538–542.

    Article  Google Scholar 

  46. Rebuffel, V. and Dinten, J.-M., Dual-energy X-ray imaging: benefits and limits, Insight, 2007, vol. 49, no. 10, pp. 589–594.

    Article  Google Scholar 

  47. Chang, S., Lee, H.K., and Cho, G., Application of a dual-energy monochromatic X-ray CT algorithm to polychromatic X-ray CT: a feasibility study, Nucl. Eng. Technol., 2012, vol. 44, no. 1, pp. 61–70.

    Article  Google Scholar 

  48. Ryzhikov, V.D., Opolonin, O.D., Galkin, S.M., Voronkin, Y.F., Lysetska, O.K., and Kostioukevitch, S.A., A multi-energy method of non-destructive testing by determination of the effective atomic number of different materials, Proc. SPIE—Int. Soc. Opt. Eng., 2010, vol. 7805, p. 78051.

    Google Scholar 

  49. Alvarez, R.E., Topics in Energy-Selective X-Ray Imaging, 2017.

    Google Scholar 

  50. Iovea, M., Neagu, M., Duliu, O. G., Oaie, Gh., Szobotka, S., and Mateiasi, G., A dedicated on-board dualenergy computer tomograph, J. Nondestr. Eval., 2011, vol. 30, p. 164–171.

    Article  Google Scholar 

  51. du Plessis, A., Meincken, M., and Seifert, T., Quantitative determination of density and mass of polymeric materials using microfocus computed tomography, J. Nondestr. Eval., 2013, vol. 32, pp. 413–417.

    Article  Google Scholar 

  52. Liang, L., Ruizhe, L., Siyuan, Zh., Tiao, Zh., and Zhiqiang, Ch., A dynamic material discrimination algorithm for dual MV energy X-ray digital radiography, Appl. Radiat. Isot., 2016, vol. 114, pp. 188–195.

    Article  Google Scholar 

  53. Alves, H., Lima, I., and Lopes, R.T., Methodology for attainment of density and effective atomic number through dual energy technique using microtomographic images, Appl. Radiat. Isot., 2014, vol. 89, pp. 6–12.

    Article  Google Scholar 

  54. Rudychev, V.G., Girka, I.A., Rudychev, D.V., and Rudychev, E.V., Forming bremsstrahlung radiation in the dualenergy method for radiography of unauthorized enclosures, East Eur. J. Phys., 2016, vol. 3, no. 2, pp. 32–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Osipov.

Additional information

Original Russian Text © S.P. Osipov, V.A. Udod, Y. Wang, 2017, published in Defektoskopiya, 2017, No. 8, pp. 35–56.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osipov, S.P., Udod, V.A. & Wang, Y. Identification of materials in X-Ray inspections of objects by the dual-energy method. Russ J Nondestruct Test 53, 568–587 (2017). https://doi.org/10.1134/S1061830917080058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830917080058

Keywords

Navigation