Skip to main content
Log in

The current state and prospects of X-ray computational tomography

  • X-Ray Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

A short review of the current state of X-ray computational tomography and its practical applications in nondestructive testing and diagnostics is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shikhaliev, P.M., Photon counting spectral CT: improved material decomposition with K-edge-filtered x-rays, Phys. Med. Biol., 2012, vol. 57, no. 6, pp. 1595–1616.

    Article  Google Scholar 

  2. Schuetz, P., Miceli, A., Jerjen, I., Flisch, A., Hofmann, J., Broennimann, R., and Sennhauser, U., Reducing environmental scattering in industrial computed tomography by system redesign, NDT&E Int., 2013, vol. 58, pp. 36–42.

    Article  Google Scholar 

  3. Schuetz, P., Jerjen, I., Hofmann, J., Plamondon, M., Flisch, A., and Sennhauser, U., Correction algorithm for environmental scattering in industrial computed tomography, NDT&E Int., 2014, vol. 64, pp. 59–64.

    Article  Google Scholar 

  4. Reddy, M.V., Lukose, S.N., Subramanian, M.P., Rao, G.V., Muralidhar, C., and Balasubramaniam, K., Industrial computed tomography system for aerospace applications: development and characterization, Insight (Northampton, U.K.), 2011, vol. 53, no. 6, pp. 307–311.

    Google Scholar 

  5. Industrial Accelerators and Their Applications, Hamm, R.W. and Hamm, M.E., Eds., Hackensack World Scientific, 2012.

  6. Wu, W., Zhu, H., Jin, M., Dobashi, K., Fujiwara, T., Uesaka, M., and Otake, Y., Partial CT and structural analysis with 950 KeV/3.95 MeV X-band Linac X-ray sources, E-J. Adv. Maint., 2013, vol. 5, no. 2, pp. 121–127.

    Google Scholar 

  7. Reims, N., Schoen, T., Boehnel, M., Sukowski, F., and Firsching, M., Strategies for efficient scanning and reconstruction methods on very large objects with high-energy x-ray computed tomography, Proc. of SPIE “Optics + Photonics,” San Diego, California, August 18–21, 2014, Bellingham, WA: Soc. Photo-Opt. Instr. Eng., 2014, pp. 921209–921209.

    Google Scholar 

  8. Sharma, A., Study of absorption and scattering tomographic gamma-ray techniques for non-destructive testing, PhD Thesis, Patiala Punjabi Univ., 2012.

    Google Scholar 

  9. Kim, J., Jung, S.H., Moon, J., Guen Park, J., Jin, J., and Cho, G., Development of transportable gamma-ray tomographic system for industrial application, Nucl. Instrum. Methods Phys. Res., Sect. A, 2012, vol. 693, pp. 203–208.

    Article  Google Scholar 

  10. He, P., Wei, B., Zhou, M., Feng, P., and Chen, M., Photonic material selection of scintillation crystals using Monte Carlo method for X-ray detection in industrial computed tomography, J. Sens., 2014, vol. 2014, p. 7.

    Article  Google Scholar 

  11. Molteni, R., Prospects and challenges of rendering tissue density in Hounsfield units for cone beam computed tomography, Oral Surg., Oral Med., Oral Pathol., Oral Radiol., 2013, vol. 116, no. 1, pp. 105–119.

    Article  Google Scholar 

  12. Wang, X., Meier, D., Mikkelsen, S., Maehlum, G.E., Wagenaar, D.J., Tsui, B.M.W., and Frey, E.C., Micro CT with energy resolved photon-counting detectors, Phys. Med. Biol., 2011, vol. 56, no. 9, pp. 2791–2816.

    Article  Google Scholar 

  13. Sato, E., Sugimura, S., Endo, H., Oda, Y., Abudurexiti, A., Hagiwara, O., and Onagawa, J., 15 Mcps photoncounting X-ray computed tomography system using a ZnO-MPPC detector and its application to gadolinium imaging, Appl. Radiat. Isot., 2012, vol. 70, no. 1, pp. 336–340.

    Article  Google Scholar 

  14. Taguchi, K., Zhang, M., Frey, E.C., Wang, X., Iwanczyk, J.S., Nygard, E., and Barber, W.C., Modeling the performance of a photon counting x-ray detector for CT: energy response and pulse pileup effects, Med. Phys., 2011, vol. 38, no. 2, pp. 1089–1102.

    Article  Google Scholar 

  15. Wang, X., Meier, D., Taguchi, K., Wagenaar, D.J., Patt, B.E., and Frey, E.C., Material separation in x-ray CT with energy resolved photon-counting detectors, Med. Phys., 2011, vol. 38, no. 3, pp. 1534–1546.

    Article  Google Scholar 

  16. Ding, H. and Molloi, S., Image-based spectral distortion correction for photon-counting x-ray detectors, Med. Phys., 2012, vol. 39, no. 4, pp. 1864–1876.

    Article  Google Scholar 

  17. Hagiwara, O., Watanabe, M., Sato, E., Matsukiyo, H., Osawa, A., Enomoto, T., and Onagawa, J., Energy-discrimination X-ray computed tomography system utilizing a silicon-PIN detector and its application to 2.0-keVwidth K-edge imaging, Nucl. Instrum. Methods Phys. Res., Sect. A, 2011, vol. 638, no. 1, pp. 165–170.

    Article  Google Scholar 

  18. Hsieh, J., Computed Tomography: Principles, Design, Artifacts, and Recent Advances, Bellingham, WA Soc. Photo-Opt. Instr. Eng., 2009.

    Google Scholar 

  19. Seeram, E., Computed Tomography: Physical Principles, Clinical Applications, and Quality Control, Amsterdam Elsevier, 2013.

    Google Scholar 

  20. Kalender, W.A., Computed Tomography: Fundamentals, System Technology, Image Quality, Applications, New York Wiley, 2011.

    Google Scholar 

  21. Pan, X., Sidky, E.Y., and Vannier, M., Why do commercial CT scanners still employ traditional, filtered backprojection for image reconstruction? Inverse Probl., 2009, vol. 25, no. 12, p. 36.

    Article  Google Scholar 

  22. Sidky, E.Y. and Pan, X., Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization, Phys. Med. Biol., 2008, vol. 53, no. 17, pp. 4777–4807.

    Article  Google Scholar 

  23. Clackdoyle, R. and Defrise, M., Tomographic reconstruction in the 21st century, IEEE Trans. Signal Process. Mag., 2010, vol. 27, no. 4, pp. 60–80.

    Article  Google Scholar 

  24. Maire, E. and Withers, P.J., Quantitative X-ray tomography, Int. Mater. Rev., 2014, vol. 59, no. 1, pp. 1–43.

    Article  Google Scholar 

  25. Beister, M., Kolditz, D., and Kalender, W.A., Iterative reconstruction methods in X-ray CT, Phys. Med., 2012, vol. 28, no. 2, pp. 94–108.

    Article  Google Scholar 

  26. Boas, F.E. and Fleischmann, D., Evaluation of two iterative techniques for reducing metal artifacts in computed tomography, Radiology, 2011, vol. 259, no. 3, pp. 894–902.

    Article  Google Scholar 

  27. Batenburg, K.J. and Sijbers, J., DART: a practical reconstruction algorithm for discrete tomography, IEEE Trans. Image Process., 2011, vol. 20, no. 9, pp. 2542–2553.

    Article  Google Scholar 

  28. Sidky, E.Y., Jørgensen, J.H., and Pan, X., Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm, Phys. Med. Biol., 2012, vol. 57, no. 10, pp. 3065–3092.

    Article  Google Scholar 

  29. Schulze, R., Heil, U., Groß, D., Bruellmann, D.D., Dranischnikow, E., Schwanecke, U., and Schoemer, E., Artifacts in CBCT: a review, Dentomaxillofac Radiol., 2011, vol. 40, no. 5, pp. 265–273.

    Article  Google Scholar 

  30. Hunter, A.K. and McDavid, W.D., Characterization and correction of cupping effect artefacts in cone beam CT, Dentomaxillofac Radiol., 2012, vol. 41, no. 3, pp. 217–223.

    Article  Google Scholar 

  31. Bootsma, G.J., Verhaegen, F., and Jaffray, D.A., The effects of compensator and imaging geometry on the distribution of x-ray scatter in CBCT, Med. Phys., 2011, vol. 38, no. 2, pp. 897–914.

    Article  Google Scholar 

  32. Abella, M., Vaquero, J.J., Sisniega, A., Pascau, J., Udías, A., García, V., and Desco, M., Software architecture for multi-bed FDK-based reconstruction in X-ray CT scanners, Comput. Methods Progr. Biomed., 2012, vol. 107, no. 2, pp. 218–232.

    Article  Google Scholar 

  33. Schörner, K., Goldammer, M., and Stephan, J., Comparison between beam-stop and beam-hole array scatter correction techniques for industrial X-ray cone-beam CT, Nucl. Instrum. Methods Phys. Res., Sect. B, 2011, vol. 269, no. 3, pp. 292–299.

    Article  Google Scholar 

  34. Kruth, J.P., Bartscher, M., Carmignato, S., Schmitt, R., De Chiffre, L., and Weckenmann, A., Computed tomography for dimensional metrology, CIRP Ann., 2011, vol. 60, no. 2, pp. 821–842.

    Article  Google Scholar 

  35. Dewulf, W., Kiekens, K., Tan, Y., Welkenhuyzen, F., and Kruth, J.P., Uncertainty determination and quantification for dimensional measurements with industrial computed tomography, CIRP Ann., 2013, vol. 62, no. 1, pp. 535–538.

    Article  Google Scholar 

  36. Schmitt, R. and Isenberg, C., Computertomografie für industrielle dimensionelle Messtechnik, Tech. Mess. ATM, 2014, vol. 81, no. 5, pp. 201–208.

    Google Scholar 

  37. Kiekens, K., Welkenhuyzen, F., Tan, Y., Bleys, P., Voet, A., Kruth, J.P., and Dewulf, W., A test object with parallel grooves for calibration and accuracy assessment of industrial computed tomography (CT) metrology, Meas. Sci. Technol. 2011, vol. 22, no. 115502, p. 7.

    Google Scholar 

  38. Wei, Q., Leblon, B., and La Rocque, A., On the use of X-ray computed tomography for determining wood properties: a review, Can. J. For. Res., 2011, vol. 41, no. 11, pp. 2120–2140.

    Article  Google Scholar 

  39. Longuetaud, F., Mothe, F., Kerautret, B., Krähenbühl, A., Hory, L., Leban, J.M., and Debled-Rennesson, I., Automatic knot detection and measurements from X-ray CT images of wood: a review and validation of an improved algorithm on softwood samples, Comput. Electron. Agric., 2012, vol. 85, pp. 77–89.

    Article  Google Scholar 

  40. Mooney, S.J., Pridmore, T.P., Helliwell, J., and Bennett, M.J., Developing X-ray computed tomography to non-invasively image 3-D root systems architecture in soil, Plant Soil, 2012, vol. 352, nos. 1–2, pp. 1–22.

    Article  Google Scholar 

  41. Cnudde, V. and Boone, M.N., High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications, Earth-Sci. Rev., 2013, vol. 123, pp. 1–17.

    Article  Google Scholar 

  42. Zhuravlev, A.V. and Vevel’, Ya.A., Possibilities of computed microtomography application in micropaleontological and lithologic studies, Neftegazov. Geol., Teor. Prakt., 2012, vol. 7, no. 2, pp. 1–13.

    Google Scholar 

  43. Heindel, T.J., A review of X-ray flow visualization with applications to multiphase flows, J. Fluids Eng., 2011, vol. 133, no. 7, pp. 074001–074017.

    Article  Google Scholar 

  44. Sakdinawat, A. and Attwood, D., Nanoscale X-ray imaging, Nat. Photonics, 2010, vol. 4, no. 12, pp. 840–848.

    Article  Google Scholar 

  45. Dierolf, M., Menzel, A., Thibault, P., Schneider, P., Kewish, C.M., Wepf, R., and Pfeiffer, F., Ptychographic X-ray computed tomography at the nanoscale, Nature, 2010, vol. 467, pp. 436–439.

    Article  Google Scholar 

  46. Bendahan, J.U.S., US Patent 7 492 862, 2009.

  47. Franco, L.R., Goodenough, D.J., and Herranz, M., US Patent 7 929 664, 2011.

  48. Bendahan, J. and Harding, G., US Patent 7 844 027, 2010.

  49. Goodenough, D.J., Herranz, M., and Franco, L.R., US Patent 20 110 163 239, 2011.

  50. Goodenough, D.J., Herranz, M., and Franco, L.R., US Patent 8,254,517, 2012.

  51. Bendahan, J., US Patent 7 539 283, 2009.

  52. Star-Lack, J. and Green, M.C., US Patent 8 472 583, 2013.

  53. Penny, R.D. and Valentine, J.D., US Patent 8 426 822, 2013.

  54. Penny, R.D. and Valentine, J.D., US Patent 8 314 394, 2012.

  55. Clayton, J.E. and Johnson, J.H., US Patent 8 223 918, 2012.

  56. Zhdanov, D.S., Syryamkin, V.I., and Bureev, A.Sh., RF Patent 2505800, Byull. Izobret., 2014, no. 3.

  57. Kuper, K.E., Development of X-ray microscopy techniques and tomography based on the synchrotron radiation source of the electron-positron storage, Cand. Sci. (Phys.-Math.) Dissertation, Novosibirsk, 2011.

    Google Scholar 

  58. Smirnov, I.S., Asadchikov, V.E., Buzmakov, A.V., Zolotov, D.A., Yakimchuk, I.V., Senin, R.A., and Gulimova, V.I., Tomography analysis of microobjects and curved surfaces, Mir Izmer., 2012, no. 6, pp. 22–31.

    Google Scholar 

  59. Nikolaev, V.I. and Chizhova, E.V., Development and prospects of the three-dimensional X-ray microanalysis: analytical review, Nauchn. Priborostr., 2011, vol. 21, no. 2, pp. 3–10.

    Google Scholar 

  60. Kovtanyuk, A.E., Nazarov, V.G., Prokhorov, I.V., and Yarovenko, I.P., RF Patent 2426102, Byull. Izobret., 2011, no. 22.

  61. Vainberg, I.A., Vainberg, E.I., Tsyganov, S.G., and Sidorin, V.B., Russian high-technology tomographs for testing and certification of critical parts of the aviation industry, Dvigatel’, 2012, no. 4, pp. 20–26.

    Google Scholar 

  62. Karikh, V.P., RF Patent 2431825, Byull. Izobret., 2011, no. 29.

  63. Industrial computed tomograph BT-600XA. http://wwwmairu/science/equipment/indexphp?SECTION_ID= 1289&ELEMENT_ID=30420.

  64. X-ray and computer tomography for industry, System of series XT H 160 and XT H 225, NIKON Company. http://wwwsovtestru/sites/default/files/XT_H_RUpdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Chakhlov.

Additional information

Original Russian Text © S.V. Chakhlov, S.P. Osipov, A.K. Temnik, V.A. Udod, 2016, published in Defektoskopiya, 2016, No. 4, pp. 56–70.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakhlov, S.V., Osipov, S.P., Temnik, A.K. et al. The current state and prospects of X-ray computational tomography. Russ J Nondestruct Test 52, 235–244 (2016). https://doi.org/10.1134/S1061830916040033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830916040033

Keywords

Navigation