Skip to main content
Log in

Acoustic investigations of the steel samples deformation during the tensile

  • Acoustic Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

The paper presents an experimental study of ultrasonic surface waves propagation in the low carbon steel specimens with different degree of degradation of microstructure and mechanical properties, subjected to tensile deformation. The purpose of this paper is to investigate and analyze the dependence between microstructure, mechanical and acoustic properties and to find appropriate parameters for stress state evaluation. For identification of degradation and stress state we use ultrasonic Rayleigh waves (URW) velocity variation obtained by in-line and off-line measurements. The degradation is imitated by structural changes caused by heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bach, F. and Askegaard, V., General stress-velocity expressions in acoustoelasticity, Exp. Mech., 1979, vol. 19, no. 2, pp. 69–75.

    Article  Google Scholar 

  2. Nerazrushyushchii kontrol. Spravochnik (Nondestructive Testing: A Handbook), Moscow: Spektr, 2007, vol. 4.

  3. Guz, A.N. and Makhort, F.G., The physical fundamentals of the ultrasonic nondestructive stress analysis of solids, Int. Appl. Mech., 2000, vol. 36, no. 9, pp. 1119–1149.

    Article  Google Scholar 

  4. Chernoochenko, A.A., Makhort, F.G., and Gushcha, O.I., Use of the theory of acoustoelasticity of Rayleigh waves to determine stresses in solids, Int. Appl. Mech., 1991, vol. 27, pp. 38–42.

    Google Scholar 

  5. Hirao, M., Fukuoka, H., and Hori, K., Acoustoelastic effect of Rayleigh surface wave in isotropic material, ASME J. Appl. Mech., 1981, vol. 48, pp. 119–124.

    Article  Google Scholar 

  6. Kobayashi, M., Ultrasonic nondestructive evaluation of microstructural changes of solid materials under plastic deformation. Part I: theory, Int. J. Plast., 1998, vol. 14, no. 6, pp. 511–522.

    Article  Google Scholar 

  7. Kobayashi, M., Ultrasonic nondestructive evaluation of microstructural changes of solid materials under plastic deformation. Part II: experiment and simulation, Int. J. Plast., 1998, vol. 14, no. 6, pp. 523–535.

    Article  Google Scholar 

  8. Zuev, L.B., Semukhov, B.S., and Bushmeleva, K.I., Dependence of the ultrasound velocity on the acting stress during plastic flow of polycrystals, Tech. Phys., 1999, vol. 44, pp. 1489–1490.

    Article  Google Scholar 

  9. Zuev, L.B., Semuhin, B.K., and Bushmeleva, K.I., Change of ultrasonic velocity during plastic deformation of Al alloys, Tech. Phys., 2000, vol. 70, no. 1, pp. 53–56.

    Google Scholar 

  10. Zuev, L.B., Danilov, V.I., Barannikova, S.A., and Gorbatenko, V.V., Autowave model of localized plastic flow of solids, Phys. Wave Phenom., 2009, vol. 17, pp. 66–75.

    Article  Google Scholar 

  11. Eldevik, S., Olsen Å.F., and Lunde, P., Sound velocity change owing to the acousto-elastic/plastic effect in steel measured using acoustic resonance technology (ART), Scandinavian Symp. on Physical Acoustics, January 29th–February 1st, 2012, Geilo, 2012.

  12. Mishakin, D.V.M. and Potter, D.G., The use of wide band ultrasonic signals to estimate the stress condition of materials, J. Phys. D: Appl. Phys., 2006, vol. 39, no. 21, pp. 4681–4687.

    Article  Google Scholar 

  13. Bobrenko, V.M., Vangeli, M.S., and Kutsenko, A.I., Acoustic Tensometry, Chisinau: Shtinitsa, 1991.

    Google Scholar 

  14. Si-Chaib, M.O., Menad, S., Djelouah, H., and Bocquet, M., An ultrasound method for the acoustoelastic evaluation of simple bending stresses, NDT&E Int., 2001, vol. 34, pp. 521–529.

    Article  Google Scholar 

  15. Landa, M. and Plesek, J., Ultrasonic techniques for nondestructive evaluation of internal stresses, 15th World Conference on Non-Destructive Testing, Rome, 2000.

    Google Scholar 

  16. Kline, R. and Jiang L., Using ultrasonic Rayleigh wave dispersion to characterize residual stresses, in: Review of Progress in Quantitative Nondestructive Evaluation, Thompson, D.O. and Chimenti, D.E., Eds., New York: Plenum,1996, pp. 1628–1636.

    Google Scholar 

  17. Husson, D. and Kino, G.S., A perturbation theory for acoustoelastic effects, J. Appl. Phys., 1982, vol. 53, no. 11, pp. 7250–7258.

    Article  Google Scholar 

  18. Rajagopal, P., Balasubramaniam, Kr., Maddu, Sh., and Krishnamurthy, C.V., A new approach to inversion of surface wave dispersion relation for determination of depth distribution of non-uniform stresses in elastic materials, Int. J. Solids Struct., 2005, vol. 42, pp. 789–803.

    Article  Google Scholar 

  19. Ditri, J. and Derrick, H., Stress distribution determination in isotropic materials via inversion of ultrasonic Rayleigh wave dispersion data, Int. J. Solids Struct., 1996, vol. 33, pp. 2437–2451.

    Article  Google Scholar 

  20. Hu, E., He, Y., and Chen, Y., Experimental study on the surface stress measurement with Rayleigh wave detection technique, Appl. Acoust., 2009, vol. 70, no. 2, pp. 356–360.

    Article  Google Scholar 

  21. Lu, W.Y., Dike, J.J., Peng, L.W., and Wang, J., Stress Evaluation and Model Validation, Using Laser Ultrasonics Materials, Livermore: Chem. Dep., Sandia Natl. Lab., 1999.

    Google Scholar 

  22. Ivanova, Y. and Partalin, T., Ultrasonic wave propagation in materials with mechanical stress, Proc. 10th European Conf. on Non-Destructive Testing, Moscow, 2010.

    Google Scholar 

  23. Ivanova, Y. and Partalin, T., Investigation of stress-state in rolled sheets by ultrasonic techniques, Ultragarsas, 2011, vol. 66, no. 1, pp. 7–15.

    Google Scholar 

  24. Min, X.H., Kato, H., and Narisaea, N., Real-time ultrasonic measurement during tensile testing of aluminum alloy plate, Mater. Sci. Eng., A, 2005, vol. 392-1, no. 2, pp. 87–93.

    Article  Google Scholar 

  25. Kato, H. and Syazwana, H., Change in ultrasonic waveform during tensile deformation of aluminum alloy and copper alloy, J. Jpn. Soc. Exp. Mech., 2009, vol. 9, no. 1, pp. 46–50.

    Google Scholar 

  26. Steel Heat Treatment Handbook, Totten, G.E. and Howes, M.H.A., Eds., Boca Raton, FL: CRC, 1997.

  27. http://www.lecoeur-electronique.com/.

  28. Muraviev, V., Zuev, L., and Komarov, K., Skorost’ ul’trazvuka i struktura stalei i splavov (The Ultrasonic Velocity and Structure of Steels and Alloys), Novosibirsk: Nauka, 1996.

    Google Scholar 

  29. Deputat, J., Dislocation contribution in the acoustoelastic effect, Arch. Acoust., 1990, vol. 15, nos. 1-2, pp. 57–68.

    Google Scholar 

  30. Dieter, G.E., Mechanical Metallurgy, London McGraw-Hill, 1998.

    Google Scholar 

  31. Filin, A.P., Prikladnaya mekhanika tverdykh tel (Applied Mechanics of Solids), Moscow: Nauka, 1975.

    Google Scholar 

  32. Hull, D., Kautz, H.E., and Vary, A., Ultrasonic velocity measurement using phase-slope and cross-correlation methods, 1984 Spring Conf. of the American Society for Nondestructive Testing, Denver, 1984.

    Google Scholar 

  33. Muravyev, V.V., Muravyeva, O.V., and Kokorina, E.N., Quality control of heat treatment of 60C2A steel bars using the electromagnetic-acoustic method, Russ. J. Nondestr. Test., 2013, vol. 49, no. 1, pp. 15–25.

    Article  Google Scholar 

  34. Tolipov, K.B., An experimental setup for contactless measurement of the velocity of Rayleigh waves and the surface displacement amplitude, Russ. J. Nondestr. Test., 2014, vol. 50, no. 12, pp. 708–712.

    Article  Google Scholar 

  35. Khlybov, A.A., Uglov, A.L., Rodyushkin, V.M., Katasonov, Y.A., and Katasonov, O.Y., The determination of mechanical stresses using Rayleigh surface waves excited by a magnetoacoustic transducer, Russ. J. Nondestr. Test., 2014, vol. 50, no. 12, pp. 701–707.

    Article  Google Scholar 

  36. Nikitina, N.Y., Kamyshev, A.V., and Kazachek, S.V., The application of the acoustoelasticity method for the determination of stresses in anisotropic pipe steels, Russ. J. Nondestr. Test., 2015, vol. 51, no. 12, pp. 171–178.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonka Ivanova.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, Y., Partalin, T. & Pashkuleva, D. Acoustic investigations of the steel samples deformation during the tensile. Russ J Nondestruct Test 53, 39–50 (2017). https://doi.org/10.1134/S1061830917010077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830917010077

Keywords

Navigation