Skip to main content
Log in

Applying nondestructive testing to quality control of additive manufactured parts

  • General Problems of Nondestructive Testing
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

Possibilities, application domains, advantages, and limitations are considered for currently used physical methods of nondestructive testing of additive manufactured parts. The methods are classified according to the physical principle of operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleshin, N.P., Grigor’ev, M.V., Shchipakov, N.A., Prilutskii, M.A., and Murashov, V.V., Using nondestructive testing methods for in-production quality control of additive manufactured parts, Russ. J. Nondestr. Test., 2016, vol. 52, no. 9, pp. 64–71.

    Article  Google Scholar 

  2. Aleshin, N.P., Murashov, V.V., Evgenov, A.G., Grigor’ev, M.V., Shchipakov, N.A., Vasilenko, S.A., and Krasnov, I.S., The classification of flaws of metal materials synthesized by the selective laser melting method and the capabilities of nondestructive testing methods for their detection, Russ. J. Nondestr. Test., 2016, vol. 52, no. 1, pp. 38–43.

    Article  Google Scholar 

  3. Aleshin, N.P., Murashov, V.V., Grigor’ev, M.V., Evgenov, A.G., Karachevtsev, F.N., Shchipakov, N.A., and Vasilenko, S.A., Flaws in heat resistant SLM-synthesized alloys, Materialovedenie, 2016, no.4.

  4. Kalinina, N.E., Kavats, O.A., and Kalinin, V.T., Improving technological properties of casting aluminum alloys by modification with nano-dispersive particles, Aviats.-Kosm. Tekh. Tekhnol., 2010, no. 4 (71), pp. 17–20.

    Google Scholar 

  5. Peters, M. and Leyens, C., Aerospace and Space Materials, Oxford: UNESCO, 2003.

    Google Scholar 

  6. Louvis, E., Fox, P., and Sutcliffe, C.J., Selective laser melting of aluminium components, J. Mater. Process. Technol., 2011, vol. 211, no. 2, pp. 275–284.

    Article  Google Scholar 

  7. Spierings, A., Schneider, M., and Eggenberger, R., Comparison of density measurement techniques for additive manufactured metallic parts, Rapid Prototyping J., 2011, vol.17.

  8. Gong, H., Rafi, K., Gu, H., Starr, T., and Stucker, B., Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes, Addit. Manuf., 2014, vol. 1, pp. 87–98.

    Article  Google Scholar 

  9. Kempen, K., Thijs, L., Yasa, E., Badrossamay, M., Verheecke, W., and Kruth, J., Process optimization and microstructural analysis for selective laser melting of AlSi10Mg, Phys. Procedia, 2012, vol. 39, pp. 439–446.

    Article  Google Scholar 

  10. Spierings, A., Herres, N., and Levy, G., Influence of the particle size distribution on surface quality and mechanical properties in am steel parts, Rapid Prototyping J., 2011, vol. 17, pp. 195–202.

    Article  Google Scholar 

  11. Vrancken, B., Wauthle, R., Kruth, J., and Humbeeck, V., Study of the Influence of Material Properties on Residual Stress in Selective Laser Melting, Paper presented at the 24th Solid Freeform Fabr. (SFF) Symp., Austin, TX, 2013.

    Google Scholar 

  12. Bael van, S., Kerckhofs, G., Moesen, M., Pyka, G., Schrooten, J., and Kruth, J.P., Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti–6Al–4V porous structures, Mater. Sci. Eng., 2011, vol. 528, pp. 7423–7431.

    Article  Google Scholar 

  13. Löber, L., Schimansky, F.P., Kuhn, U., Pyczak, F., and Eckert, J., Selective laser melting of a beta-solidifying TNM-B1 titanium aluminide alloy, J. Mater. Process. Technol., 2014, vol. 214, pp. 1852–1860.

    Article  Google Scholar 

  14. Ahsan, M.N., Bradley, R., and Pinkerton, A.J., Microcomputed tomography analysis of intralayer porosity generation in laser direct metal deposition and its causes, J. Laser Appl., 2011, vol.23.

  15. Yu, J., Rombouts, M. and Maes, G., Cracking behavior and mechanical properties of austenitic stainless steel parts produced by laser metal deposition, Mater. Des., 2013, vol. 45, pp. 228–235.

    Article  Google Scholar 

  16. Cerniglia, D., Scafidi, M., Pantano, A., and Santospirito, S.-P., Laser Ultrasonic Technique for Laser Powder Deposition Inspection, Paper presented at the 13th Int. Symp. Nondestr. Charact. Mater. (NDCMXIII), Le Mans, France, May 2013.

    Google Scholar 

  17. Rudlin, J., Cerniglia, D., Scafidi, M., and Schneider, C., Inspection of Laser Powder Deposited Layers, Paper presented at the 11th Eur. Conf. Non-Destr. Test. (ECNDT 2014), Prague, Czech Republic, October 2014.

    Google Scholar 

  18. Nilsson, P., Appelgren, A., Henrikson, P., and Runnemalm, A., Automatic Ultrasonic Testing for Metal Deposition, Paper presented at the 18th World Conf. Nondestr. Test., Durban, South Africa, April 2012.

    Google Scholar 

  19. Slotwinski, J.A., Garboczi, E.J., and Hebenstreit, K.M., Porosity measurements and analysis for metal additive manufacturing process control, J. Res. Natl. Inst. Stand. Technol., 2014, vol. 119, pp. 494–528.

    Article  Google Scholar 

  20. Karthik, N.V., Gu, H., Pal, D., Starr, T., and Stucker, B., High Frequency Ultrasonic Non Destructive Evaluation of Additively Manufactured Components, Paper presented at the 24th Annual Int. Solid Freeform Fabr. (SFF) Symp., Austin, TX, 2013.

    Google Scholar 

  21. Wong, B.S. and Ong, M.Y., Non-Destructive Testing of Metallic 3D Printed Specimens, Saarbrucken: LAP LAMBERT Academic, 2015.

    Google Scholar 

  22. Smith, R.J., Li, W.Q., Coulson, J., Clark, M., Somekh, M.G., and Sharples, S.D., Spatially resolved acoustic spectroscopy for rapid imaging of material microstructure and grain orientation, Meas. Sci. Technol., vol. 25, 2014. doi 10.1364/OE.14.010435

  23. Caiazzo, F., Cardaropoli, F., Alfieri, V., Sergi, V., and Cuccaro, L., Experimental analysis of Selective Laser Melting process for Ti–6Al–4V turbine blade manufacturing, Proc. XIX Int. Symp. High-Power Laser Syst. Appl., 2012, vol. 8677. doi 10.1117/12.201057710.1117/12.2010577

  24. Rometsch, P.A., Pelliccia, D., Tomus, D., and Wu, X., Evaluation of polychromatic X-ray radiography defect detection limits in a sample fabricated from Hastelloy X by selective laser melting, NDT & E Int., 2014, vol. 62, pp. 184–192.

    Article  Google Scholar 

  25. Ziolkowski, G., Chlebus, E., Szymczyk, P., and Kurza, J., Application of X-ray CT method for discontinuity and porosity detection in 316L stainless steel parts produced with SLM technology, Arch. Civ. Mech. Eng., 2014, vol.13.

  26. Leonard, F., Tammas-Williams, S., Prangnell, P.B., Todd, I., and Withers, P.J., Assessment by X-Ray CTof the Effects of Geometry and Build Direction on Defects in Titanium ALM Parts, Paper presented at the Conf. Ind. Comput. Tomogr. (ICT), Wels, Austria, 2012.

    Google Scholar 

  27. Tammas-William, S., Zhao, H., Leonard, F., Derguti, F., Todd, I., and Prangnell, P.B., XCT analysis of the influence of melt strategies on defect population in Ti-6Al-4V components manufactured by selective electron beam melting, Mater. Charact., 2015, vol. 102, pp. 47–61.

    Article  Google Scholar 

  28. Raguvarun, K., Balasubramaniam, K., and Rajagopal, P., A Study of Internal Structure in Components Made by Additive Manufacturing Process Using 3D X-Ray Tomography, Paper presented at the QNDE Rev. Prog. Quant. Nondestr. Eval., Boise, ID, 2014.

    Google Scholar 

  29. Slotwinski, J.A. and Garboczi, E.J., Porosity of Additive Manufacturing Parts for Process Monitoring, Paper presented at AIP Conf. Proc., Baltimore, MD,2013.

    Google Scholar 

  30. Plessis du, A., le Roux, S.G., Els, J., Booysen, G., and Blaine, D.C., Application of microCT to the nondestructive testing of an additive manufactured titanium component, Case Stud. Nondestr. Test. Eval., 2015, vol. 4, pp. 1–7.

    Article  Google Scholar 

  31. Ye, N. and Jian, F., Effect of voxel size and partial volume effect on accuracy of tooth volumetric measurements with cone beam CT, Dentomaxillofac Radiol., 2013, vol. 42, no.5.

    Google Scholar 

  32. Sezgin, M. and Sankur, B., Survey over image thresholding techniques and quantitative performance evaluation, Electron. Imaging, 2004, vol. 13, p.146.

    Article  Google Scholar 

  33. Pal, N.R. and Pal, S.K., A review on image segmentation techniques, Pattern Recognit., 1993, vol. 26, p. 1277.

    Article  Google Scholar 

  34. Rajagopalan, S., Lu, L.C., Yaszemski, M.J., and Robb, R.A., Optimal segmentation of microcomputed tomographic images of porous tissue-engineering scaffolds, J. Biomed. Mater. Res., 2005, vol. 75, p. 877.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Aleshin.

Additional information

Original Russian Text © N.P. Aleshin, M.V. Grigor’ev, N.A. Shchipakov, M.A. Prilutskii, V.V. Murashov, 2016, published in Defektoskopiya, 2016, No. 10, pp. 63–75.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleshin, N.P., Grigor’ev, M.V., Shchipakov, N.A. et al. Applying nondestructive testing to quality control of additive manufactured parts. Russ J Nondestruct Test 52, 600–609 (2016). https://doi.org/10.1134/S1061830916100028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830916100028

Keywords

Navigation