Skip to main content
Log in

The development and current state of methods for the nondestructive testing and acoustic tomography of concrete

  • Acoustic Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

The development of acoustic methods for the nondestructive testing of concrete during the recent decades is described. The main characteristic problems and tasks of acoustic tomography of concrete are outlined and the evolution of the methods of their solution is analyzed. The advantages and disadvantages of the synthetic-aperture focusing method as a tool for the visualization of the internal structure of concrete are discussed. Possible directions of further progress in theory, as well as practical acoustic tomography methods, including those using phase information, are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shevaldykin, V.G., Ultrasonic introscopy of concrete constructions in conditions of one-side access, Doctoral Thesis in Engeneering Sciences, Moscow: MSIA “Spectrum”, 2000.

    Google Scholar 

  2. Jones, R. and Fącąoaru, I., Recommendations for testing concrete by the ultrasonic pulse method, Materials and Struct., 1969, vol. 2, no. 4, pp. 275–284.

    Google Scholar 

  3. Filonodov, A.M. and Tretiakov, A.K., Ultrasonic Testing of Concrete in Hydro-technical Building Industry, Moscow: Energy, 1969.

    Google Scholar 

  4. Jones, R. and Fącąoaru, I., Nondestructive Methods of Concrete Testing, Transl. from Romanian, Moscow: Stroyizdat, 1974.

    Google Scholar 

  5. Pochtovik, G.Ya., Lipnik, V.G., and Filonidov, A.M., Ultrasonic Nondestructive Testing of Concrete in Energetics Construction, Moscow: Energy, 1977.

    Google Scholar 

  6. Ermolov, I.N. and Pilin, B.P., Cuurent state and perspectives of ultrasonic control of metals with large grains, Plant Lab, 1979, no. 1, pp. 46–52.

    Google Scholar 

  7. Potapov, A.I., Application of pulse low-frequency ultrasonic methods for quality control of items made of large-element materials, Defectosopy, 1979, no. 7, pp. 46–58.

    Google Scholar 

  8. Kovalev, A.V., Shevaldykin, V.G., Kozlov, V.N., and Yakovlev, N.N., Some problems of development of ultrasonic pulse-echo method of control for items and materials, Devices and Control Systems, 1988, no. 5, pp. 18–20.

    Google Scholar 

  9. Kovalev, A.V., Shevaldykin, V.G., Kozlov, V.N., Samokrutov, A.A., and Yakovlev, N.N., Ultrasonic testing of large-element materials in conditions of one-side access, Devices and Control Systems, 1989, no. 5, pp. 9–10.

    Google Scholar 

  10. Kozlov, V.N., Samokrutov, A.A., Yakovlev, N.N., Kovalev, A.V., and Shevaldykin, V.G., Acoustic Band C-scan tomography of large-element materials by pulse-echo method, Devices and Control Systems, 1989, no. 7, pp. 21–24.

    Google Scholar 

  11. Zaretskiy-Pheoktistov, G.G. and Rapoport, Yu.M., Ultrasonic transducers for surface sounding of large-element materials, Defectoscopy, 1990, no. 2, pp. 89–91.

    Google Scholar 

  12. Lange, Yu.V., Acoustic Low-frequency Methods and Facilities of Nondestructive Testing of Multilayer Constructions, Moscow: Mashinostroenie, 1991.

    Google Scholar 

  13. Kovalev, A.V., Kozlov, V.N., Samokrutov, A.A., Shevaldykin, V.G., and Yakovlev, N.N., Ultrasonic testing of the structurally inhomogeneous materials by one-sided access, Proc. 13th World Conf. on Non-Destructive Testing. San Paulo, Brazil, 18–23 Oct., 1992, vol. 2, pp. 911–913.

    Google Scholar 

  14. Hillger, W., Inspection of concrete by ultrasonic pulse-echo-technique, Proc. 6th European 10 Conference on Non-Destructive Testing, Nice, 1994, p. 1159–1163.

    Google Scholar 

  15. Kroggel, O., Jansohn, R., and Ratmann, M., Progress in application of ultrasound in pulse-echo-technique to examine concrete structures, Proc. 6th European Conf. on Non-Destructive Testing, Nice, 1994, pp. 1145–1152.

    Google Scholar 

  16. Samokrutov, A.A., Ultrasonic pulse-echo thickness measurements of concrete, PhD in Engineering Thesis (Scientific Talk), Moscow: MSIA “Spectrum”, 1996.

    Google Scholar 

  17. Kozlov, V.N., Samokrutov, A.A., and Shevaldykin, V.G., Thickness measurements and flaw detection in concrete using ultrasonic echo method, Nondestr. Test. Eval., 1997, vol. 13, pp. 73–84.

    Google Scholar 

  18. Krause, M., Barmann, M., Frielinghaus, R., Kretzschmar, F., Kroggel, O., Langenberg, K.J., Maierhofer, C., Muller, W., Neisecke, J., Schickert, M., Schmitz, V., Wiggenhauser, H., and Wollbold, F., Comparison of pulse-echo methods for testing concrete, NDT&E International, 1997, vol. 30, no. 4, pp. 195–204.

    Google Scholar 

  19. Gaydecki, P.A. and Burdekin, F.M., Nondestructive testing of reinforced and prestressed concrete structures, Nondestr. Test. Eval., 1998, vol. 14, pp. 339–392.

    Google Scholar 

  20. Karaoguz, M., Bilgutay, N., Akgul, T., and Popovics, S., Ultrasonic testing of concrete using split spectrum processing, Mater. Eval., 1999, no. 11, pp. 1183–1190.

    Google Scholar 

  21. Lange, Yu.V., Moujitski, V.F., Shevaldykin, V.G., Kozlov, V.N., and Samokrutov, A.A., Non-destructive testing of multilayer structures and concrete, Insight., 1998, vol. 40, no. 6, pp. 400–403.

    Google Scholar 

  22. Sansalone, M. and Carino, N.J., Flaw detection in concrete using impact-echo method, Bridge Eval. Repair. Rehabil. NATO ASI Ser., 1990, vol. 187, pp. 101–118.

    Google Scholar 

  23. Gaydecki, P.A., Burdekin, F.M., Damaj, W., John, D.G., and Payne, P.A., The propagation and attenuation of medium-frequency ultrasonic waves in concrete: a signal analytical approach, Meas. Sci. Technol., 1992, vol. 3, no. 1, pp. 126–134.

    Google Scholar 

  24. Kozlov, V.N., Podolskiy, V.I., Samokrutov, A.A., and Shevaldykin, V.G., Evaluation of state of reinforced concrete supports of the overhead wiring by a surface sounding ultrasonic device, In the World of NDT, 2000, no. 1, pp. 45–47.

    Google Scholar 

  25. Danilov V.N., To estimation of the structural noise level with account of secondary Rayleigh scattering of the elastic waves, Defectoscopy, 1989, no. 5, pp. 79–83.

    Google Scholar 

  26. Danilov, V.N. and Yamshikov, V.S., The scattering of longitudinal elastic waves at a set of small spherical inhomogeneities, Defectoscopy, 1984, no. 5, pp. 14–19.

    Google Scholar 

  27. Djuraev, G.G., Elastic oscillation energy absorption in sample materials and in constructions, Works of MGSU: Nondestructive Methods of Materials Testing, Moscow, 1971, no. 82, pp. 34–82.

    Google Scholar 

  28. Kartashev, V.G. and Kuzmin, S.V., Structural noise analysis in problems of ultrasonic testing, Works of MPEI, Moscow: MPEI, 1991, no. 642, pp. 128–138.

    Google Scholar 

  29. Kessler, N.A. and Shraifeld, L.I., Study of ultrasound scattering with account for statistics of distribution of the grain sizes of polycrystalline metals, Defectoscopy, 1975, no. 1, pp. 95–100.

    Google Scholar 

  30. Kovalev, A.V., Kozlov, V.N., Samokrutov, A.A., Shevaldykin, V.G., and Yakovlev, N.N., Pulse-echo method in testing of concrete, Defectoscopy, 1990, no. 2, pp. 29–41.

    Google Scholar 

  31. Kozlov, V.N., Shevaldykin, V.G., and Yakovlev, N.N., Experimantal estimation of sound attenuation in concrete, Defectoscopy, 1988, no. 2, pp. 67–75.

    Google Scholar 

  32. Koriachenko, V.D., Statistical processing of a flaw detector signals with purpose of increasing the signal-tonoise ratio in presence of reverberational structural distortions, Defectoscopy, 1975, no. 1, pp. 87–95.

    Google Scholar 

  33. Shevaldykin, V.G., Kozlov, V.N., and Yakovlev, N.N., About corruption of ultrasonic pulses in media with high attenuation, Works of NIKIMP. Current Methods and Facilities of Nondestructive Testing, 1986, pp. 60–63.

    Google Scholar 

  34. Yakovlev, N.N., Shevaldykin, V.G., and Kozlov, V.N., Results of ultrasound attenuation measurements in concrete, Proc. Abstracts of XI All-Soviet Conf. “Non-destructive Physical Methods and Facilities of Control”, Moscow: MSIA “Spectrum”, 1987.

    Google Scholar 

  35. Saniie, J., Wang, T., and Bilgutay, N.M., Analysis of homomorphic processing for ultrasonic grain signal characterization, Proc. IEEE Trans. UFFC, 1989, vol. 36, no. 3, pp. 365–375.

    Google Scholar 

  36. Azenha, M., Magalhães, F., Faria, R., and Cunha, B., Measurement of concrete E-modulus evolution since casting: A novel method based on ambient vibration, Cement. Concr. Res., 2010, vol. 40, no. 7, pp. 1096–1105.

    Google Scholar 

  37. Jung, Y.-Ch., Kundu, T., and Ehsani, M.R.A, New nondestructive inspection technique for reinforced concrete beams, ACI Mater. J., 2002, vol. 99, no. 3, pp. 292–299.

    Google Scholar 

  38. Wu, T.-T., Fang, J.-S., and Liu, P.-L., Detection of the depth of a surface-breaking crack using transient elastic waves, J. Acoust. Soc. Amer., 1995, vol. 97, no. 3, pp. 1678–1686.

    Google Scholar 

  39. Liu, P.-L., Lee, K.-H., Wu, T.-T., and Kuo, M.-K., Scan of surface-opening cracks in reinforced concrete using transient elastic waves, Nondestruct. Test. Eval. Internat., 2001, vol. 34, no. 3, pp. 219–226.

    Google Scholar 

  40. Ferraro, Ch.C., Advanced nondestructive monitoring and evaluation of damage in concrete materials, Thesis. University of Florida, 2003.

    Google Scholar 

  41. Liu, P.-L., Yeh, B.-L., and Yiu, Ch.-Y., Imaging of concrete defects using elastic waves tests, Bul. Col. Eng., 2004, no. 91, pp. 41–50.

    Google Scholar 

  42. Liu, P.-L. and Yeh P.-L., Imaging of internal cracks in concrete structures using the volume rendering technique, Bul. Col. Eng., 2004, no. 91, pp. 41–50.

    Google Scholar 

  43. Liu, P.-L. and Yeh, P.-L., Imaging of internal cracks in concrete structures using the surface rendering technique, Nondestruct. Test. Eval. Internat., 2009, vol. 42, no. 3, pp. 181–187.

    Google Scholar 

  44. Liu, P.-L. and Yeh P.-L., Vertical spectral tomography of concrete structures based on impact echo depth spectra, Nondestruct. Test. Eval. Internat., 2010, vol. 43, no. 1, pp. 45–53.

    Google Scholar 

  45. Popovics, J.S., NDE techniques for concrete and masonry structures, Eerthq. Eng. Struct. D., 2003, vol. 5, no. 2, pp. 49–59.

    Google Scholar 

  46. Shin, S.W., Zhu, J., Min, J., and Popovics, J.S., Crack depth estimation in concrete using energy transmission of surface waves, ACI Mater. J., 2008, vol. 105, no. 5, pp. 510–516.

    Google Scholar 

  47. Shiotani, T. and Aggelis, D.G., Wave propagation in cementitious material containing artificial distributed damage., Mater. Struct., 2009, vol. 42, no. 3, pp. 377–384.

    Google Scholar 

  48. Shlivinski, A. and Langenberg, K.J., Defect imaging with elastic waves in inhomogeneous–anisotropic materials with composite geometries, Ultrasonics., 2007, vol. 46, no. 1, pp. 89–104.

    Google Scholar 

  49. Tong, J.-H., Using the transient elastic wave technique to image the defect of concrete structure, Proc. 16th WCNDT. CD-ROM Proc.

  50. Tong, J.-H., Liao, Sh.-T., and Lin, Ch.-Ch., A new elastic-wave-based imaging method for scanning the defects inside the structure, Proc. IEEE Trans., 2007, UFFC-54, no. 1, pp. 128–137.

    Google Scholar 

  51. Tong, J.-H., Chiu, Ch.-L., and Liao, Sh.-T., A elastic-wave-based imaging method with synthetic aperture focusing techique for scanning defects inside concrete structure, J. Appl. Sci. Eng., 2013, vol. 16, no. 1, pp. 45–50.

    Google Scholar 

  52. Tong, J.-H., Chiu, Ch.-L., and Wang, Ch.-Y., Multi-directional SAFT method for detecting the defect inside concrete structures, APCNDT, 2013.

    Google Scholar 

  53. Wang, Ch.-Y., Tong, J.-H., and Chiu, Ch.-L., A modified synthetic aperture focusing technique (SAFT) by the Hilbert-Huang transform (HHT), Proc. 17th World Conf. Nondestr. Test., Shanghai, China, 2008.

    Google Scholar 

  54. Buyukozturk, O., Imaging of concrete structures, NDT&E Int., 1998, vol. 31, no. 4, pp. 233–243.

    Google Scholar 

  55. Chang, Y.-F., Wang, Ch.-Y., and Hsieh, Ch.-H., Feasibility of detecting embedded cracks in concrete structures by reflection seismology, Nondestruct. Test. Eval. Internat., 2001, vol. 34, no. 1, pp. 39–48.

    Google Scholar 

  56. Colton, D., Coyle, J., and Monk, P., Recent developments in inverse acoustic scattering theory, SIAM Rev., 2000, vol. 42, no. 3, pp. 369–414.

    Google Scholar 

  57. Jonas, P. and Louis, A.K., Phase contrast tomography using holographic measurements, Inv. Probl., 2004, vol. 20, no. 1, pp. 75–102.

    Google Scholar 

  58. Achenbach, J.D., From ultrasonics to failure prevention, in Elastic Waves and Ultrasonic Nondestructive Evaluation, Datta, S.K., Achenbach, J.D., and Rajapakse, Y.S., Eds., New York: Elsevier Science, 1990, pp. 3–15.

    Google Scholar 

  59. Achenbach, J.D., Gautesen, A.K., and Mendelsohn, D.A., Ray analysis of surface-wave interaction with an edge crack, Proc. IEEE Trans. Sonics Ultrason., 1980, vol. SU-27, no. 3, pp. 124–129.

    Google Scholar 

  60. Kundu, T. and Mal, A.K., Diffraction of elastic waves by a surface crack on a plate, J. Appl. Mech., 1981, vol. 48, no. 3, pp. 570–576.

    Google Scholar 

  61. Carino, N.J., The impact-echo method: An overview, Nat. Inst. Stand. Technol. U.S. Dept. Commerce, 2001.

    Google Scholar 

  62. Schechinger, B. and Vogel, Th., Acoustic emission for monitoring a reinforced concrete beam subject to fourpoint-bending, Constr. Build. Mater., 2007, vol. 21, pp. 483–490.

    Google Scholar 

  63. Aggelis, D.G., Classification of cracking mode in concrete by acoustic emission parameters, Mech. Res. Commun., 2011, vol. 38, pp. 153–157.

    Google Scholar 

  64. Grosse, Ch.U. and Ohtsu, M., Eds., Acoustic Emission Testing, Berlin, Heidelberg: Springer-Verlag, 2008.

    Google Scholar 

  65. Jacobs, L.J. and Whitcomb, R.W., Laser generation and detection of ultrasound in concrete, J. Nondestruct. Eval., 1997, vol. 16, no. 2, pp. 57–65.

    Google Scholar 

  66. Schempp, F., Fully non-contact, air-coupled generation and detection of ultrasound in concrete for nondestructive testing, Thesis. Georgia Institute of Technology. Academic Faculty, 2013.

    Google Scholar 

  67. Schickert, M., Krause, M., and Müller, W., Ultrasonic imaging of concrete elements using reconstruction by synthetic aperture focusing technique, J. Mater. Civ. Eng., 2003, vol. 15, no. 3, pp. 235–246.

    Google Scholar 

  68. Schickert, M., Progress in ultrasonic imaging of concrete, Mater. Struct., 2005, vol. 38, no. 9, pp. 807–815.

    Google Scholar 

  69. Schickert, M., The use of ultrasonic A-scan and B-scan and SAFT techniques for testing concrete elements, Proc. Second Internat. Conf. NDT Concrete in the Infrastructure, Nashville, Tennessee, 1996, pp. 135–142.

    Google Scholar 

  70. Kroggel, O., Jahnson, R., and Ratmann, M., Novel ultrasound system to detect voids ducts in post-tensioned bridges, Proc. 6th Internat. Conf. Struct. Faults. Repair. London: Engineering Technics Press, Forde M.C., Ed., 1995, vol. 1, pp. 203–208.

    Google Scholar 

  71. Krause, M., Schickert, G., Wiggenhauser, H., Wilsch, G., and Wüstenberg, H., Ultraschall-Impulsecho zur zerstörungsfreien Prüfung an Bauwerken aus Beton, in DGZfP-Jahrestagung in Fulda, Vorträge und Plakatberichte, DGZfP-Berichtsband 33, Berlin, 1992, pp. 214–221.

    Google Scholar 

  72. Krause, M., Müller, W., and Wiggenhauser, H., Ultrasonic inspection of tendon ducts in concrete slabs using 3D-SAFT, Acoust. Imag., 1997, vol. 23, pp. 433–439.

    Google Scholar 

  73. Schickert, M., Krause, M., and Müller, W., Ultrasonic imaging of concrete elements using reconstruction by Synthetic Aperture Focusing Technique, J. Mater. Civ. Eng., 2003, vol. 15, no. 3, pp. 235–246.

    Google Scholar 

  74. Marklein, R., Langenberg, K.J., Klaholz, S., and Kostka, J., Ultrasonic modeling of real-life NDT situations: Applications and further developments, in Review of Progress in Quantitative Nondestructive Evaluation, Thompson, D.O. and Chimenti D.E., Eds., New York: Plenum Press, 1996, vol. 15B, pp. 1839–1846.

    Google Scholar 

  75. Reinhardt, H.-W. and Grosse, C., Improvement and application of NDT methods in civil engineering in the frame of a collaborative research project funded by the German Research Society, Proc. Internat. Symp. NonDestruct. Test. Civ. Eng. Berlin, Germany, 2003, Lecture 3.

    Google Scholar 

  76. Mayer, K., Ultraschallabbildungsverfahren: Algorithmen, Methoden der Signalverarbeitung und Realisierung, Dissertation zur Erlangung des Grades des Doktor-Ingenieurs an der Universität-GH Kassel Fachbereich Eletrotechnik, Kassel, 1990.

    Google Scholar 

  77. Krause, M., Mielentz, F., Milman, B., Müller, W., Schmitz, V., and Wiggenhauser, H., Ultrasonic imaging of concrete members using an array system, Nondestruct. Test. Eval. Internat., 2001, vol. 34, no. 9, pp. 403–408.

    Google Scholar 

  78. Krause, M., Wiggenhauser, H., and Wilsch, G., Advanced pulse echo method for ultrasonic testing of concrete, Proc. Internat. Conf. Nondestr. Test. Civ. Eng., Bungey, J.H., Ed., Northhampton: The British Institute of NDT, 1993, pp. 821–827.

    Google Scholar 

  79. Krause, M. and Wiggenhauser, H., Ultrasonic pulse echo technique for concrete elements using synthetic aperture, Proc. Internat. Conf. NDT Civ. Eng. Liverpool, Bungey, J.H., Ed., Northampton: The British Institute of NDT, 1997, vol. 2, pp. 135–142.

    Google Scholar 

  80. Köhler, B., Hentges, G., and Müller, W., Improvement of ultrasonic testing of concrete by combining signal conditioning methods, scanning laser vibrometer and space averaging techniques, in NDT&E Internat. Sonderheft, 1998, vol. 31, no. 4, pp. 281–287.

    Google Scholar 

  81. Kroggel, O., Jansohn, R., and Scherzer, J., Der transparente, Beton, Betonund Stahlbetonbau, 2001, vol. 96, no. 3, pp. 157–158.

    Google Scholar 

  82. Schmitz, V. and Müller, W., Synthetic aperture focusing technique for industrial applications, Proc. 27th Internat. Acoust. Imag. Symp., Saarbrücken, Germany, 2003.

    Google Scholar 

  83. Mayer, K., Marklein, R., Langenberg, K.J., and Kreutter, T., Threedimensional imaging system based on Fourier transform synthetic aperture focusing technique, Ultrasonics, 1990, vol. 28, pp. 241–255.

    Google Scholar 

  84. Mielentz, F., Krause, M., and Wüstenberg, H., Entwicklung einer GruppenstrahlerSendeeinheit für Ultraschalluntersuchungen von Betonbauteilen, in DGZfP-Jahrestagung in Weimar, DGZfP-Berichtsband BB 80-CD, Vortrag 44, Berlin, 2002.

    Google Scholar 

  85. Mielentz, F., Milmann, B., Müller, W., and Schmitz, V., Imaging of cracks and honeycombing in concrete elements, Proc. 27th Internat. Acoust. Imag. Symp., Saarbrücken, Germany, 2003.

    Google Scholar 

  86. Krause, M., Wiggenhauser, H., and Krieger, J., Materialtechnische Untersuchung beim Abbruch der Talbrücke Haiger, Bundesanstalt für Straβenwesen (BASt) (Hrsg.); Berichte Reihe B, Brückenund Ingenieurbau, Heft B18, Bremerhaven: Wirtschaftsverlag NW, Verlag für neue Wissenschaft GmbH, 2002, 111 Seiten.

    Google Scholar 

  87. Krause, M., Bärmann, R., Frielinghaus, R., Kretzschmar, F., Kroggel, O., Langenberg, K., Maierhofer, Ch., Müller, W., Neisecke, J., Schickert, M., Schmitz, V., Wiggenhauser, H., and Wollbold, F., Comparsion of pulse-echo methods for testing concrete, in NDT&E International Sonderheft, 1997, vol. 30, no. 4, pp. 195–204.

    Google Scholar 

  88. Krieger, J., Krause, M., and Wiggenhauser, H., Tests and assessments of NDT methods for concrete bridges, in Struct. Mater. Technol. III. Bellnigham: Proc. SPIE, Medlock, R.D. and Laffrey, D.C., Eds., 1998, vol. 3400, pp. 258–269.

    Google Scholar 

  89. Streicher, D., Krause, M., Kroggel, O., Schickert, M., and Müller, W., Ultraschallecho an Beton-Definition der Kenngröβen zur Beurteilung der Leistungsfähigkeit von bildgebenden Verfahren, in DGZfP-Jahrestagung in Weimar, DGZfP-Berichtsband BB 80-CD, Plakat 31, Berlin, 2002.

    Google Scholar 

  90. Krause, M., Wiggenhauser, H., and Krieger, J., NDE of a post tensioned concrete bridge girder using ultrasonic pulse echo and impact echo, Proc. Struct. Mater. Technol. NDE/NDT for Highways and Bridges. Topical Conference, The Westin Cincinnati, Cincinnati, OH, USA, 2002, pp. 386–395.

    Google Scholar 

  91. Mayer, K., et al., Characterization of ultrasonic and radar reflector types in concrete by phase evaluation of the signal and the reconstructed image, Proc. 9th European Conf. NDT, 2006.

    Google Scholar 

  92. Mayer, K., Langenberg, K.-J., Krause, M., Milmann, B., and Mielentz, F., Characterization of reflector types by phase-sensitive ultrasonic data processing and imaging, J. Nondestruct. Eval., 2008, vol. 27, nos. 1–3, pp. 35–45.

    Google Scholar 

  93. Krause, M., Localization of grouting faults in post tensioned concrete structures, Non-Destruct. Assess. Concrete Struct.: Reliability and Limits of Single and Combined Tech. RILEM State of the Art Reports, Breysse, D., Ed., Springer, 2012, vol. 1, pp. 263–304.

    Google Scholar 

  94. Kurz, J.H., Grosse, Ch.U., Reinhardt, H.-W., Strategies for reliable automatic onset time picking of acoustic emissions and of ultrasound signals in concrete, Ultrasonics, 2005, vol. 43, no. 7, pp. 538–546.

    Google Scholar 

  95. Wiggenhauser, H., Innovative ultrasonic techniques for inspection and monitoring of large concrete structures, EPJ Web of Conf., 2013, vol. 56, p. 04004.

    Google Scholar 

  96. Gluhov N.A., Point ultrasound sources as instruments for control of physical and chemical properties of materials, Defectoscopy, 1992, no. 8, pp. 49–51.

    Google Scholar 

  97. Dzenis, V.V., Application of Ultrasonic Transducers with Dry Point Contact for Non-destrictive Testing, Riga: Zinatne, 1987, pp. 39–75.

    Google Scholar 

  98. Shevaldykin, V.G., Kozlov, V.N., and Samokrutov, A.A., Inspection of concrete by ultrasonic pulse-echo tomograph with dry contact, Proc. 7th European Conf. on Non-Destructive Testing, Copenhagen, 1998.

    Google Scholar 

  99. Wu, T.-T. and Fang, J.-S., A new method for measuring in situ concrete elastic constants using horizontally polarized conical transducers, J. Acoust. Soc. Amer., 1997, vol. 101, no. 1, pp. 330–336.

    Google Scholar 

  100. Shevaldykin, V.G., Samokrutov, A.A., and Kozlov, V.N., Ultrasonic low frequency short-pulse transducers with dry point contact. Development and application, Internat. Symp. Civ. Eng., 2003.

    Google Scholar 

  101. Shevaldykin, V.G., Yakovlev, N.N., and Kozlov, V.N., New ultrasonic low frequency piezoelectric transducers, Defectoscopy, 1990, no. 6, pp. 44–50.

    Google Scholar 

  102. Yakovlev, N.N., Samokrutov, A.A., Kozlov, V.N., and Shevaldykin, V.G., Ultrasonic low-frequency piezoelectric transducers with low level of self noise, Devices and Control Systems, 1989, no. 8, pp. 24–27.

    Google Scholar 

  103. Kozlov, V.N., Samokrutov, A.A., and Shevaldykin, V.G., Ultrasonic devices with dry acoustic contact for nondestructive testing of items of reinforced concrete and natural stone, Science and Technical Developments. Collected Works, 1994, no. 5, pp. 41–43.

    Google Scholar 

  104. Shevaldykin, V.G., Kozlov, V.N., and Samokrutov, A.A., Testing of concrete by ultrasonic pulse-echo tomograph with dry contact, Control. Diagnostics, 1998, no. 1, pp. 49–51.

    Google Scholar 

  105. Shevaldykin, V.G., Samokrutov, A.A., and Kozlov, V.N., Ultrasonic low-frequency transducers with dry dot contact and their applications for evaluation of concrete structures, Ultrasonics Symp. Proc., 2002, vol. 1, pp. 793–798.

    Google Scholar 

  106. Azar, L. and Wooh, S.-C., Experimental characterization of ultrasonic phased arrays for nondestructive evaluation of concrete structures, Mater. Eval., 1999, vol. 57, no. 2, pp. 134–140.

    Google Scholar 

  107. Bossi, R.H. and Hildebrand, B.P., Stepped-frequency ultrasonic holography, Mater. Eval., 1988, vol. 46, no. 4, pp. 659–670.

    Google Scholar 

  108. Corl, P.D., Grant, P.M., and Kino, G.S., A digital synthetic focus acoustic imaging system for NDE, Proc. IEEE Ultrasonics Symp., 1978, pp. 263–268.

    Google Scholar 

  109. Kraus, H.G., Generalized synthetic aperture, focused transduser, pulse-echo, ultrasonic scan data processing for non-destructive inspection, Ultrasonics, 1983, vol. 21, no. 1, pp. 11–18.

    Google Scholar 

  110. Shandiz, H.T. and Gaydecki, P., A new SAFT method in ultrasonic imaging at very low frequency by using pulse echo method, NDT. Net., 1999, vol. 4, no. 11.

    Google Scholar 

  111. Shandiz, H.T. and Gaydecki, P., Low frequency ultrasonic images using time domain SAFT in pitch catch method, NDT. Net., 1999, vol. 4, no. 11.

    Google Scholar 

  112. Thomson, R.N., A portable system for high resolution ultrasonic imaging on site, Brit. J. NDT, 1984, vol. 26, no. 5, pp. 281–285.

    Google Scholar 

  113. Thomson, R.N., Transverse and longitudinal resolution of the synthetic aperture focusing technique, Ultrasonics, 1984, vol. 22, no. 1, pp. 9–15.

    Google Scholar 

  114. Fink, M., Time reversal of ultrasonic fields. Part I: Basic principles, Proc. IEEE Trans., 1992, vol. UFFC-39, no. 5, pp. 555–566.

    Google Scholar 

  115. Samokrutov, A.A. and Shevaldykin, V.G., Ultrasonic tomography of metal constructions by digital focusing of antenna array method, Defectoscopy, 2011, no. 1, pp. 21–38.

    Google Scholar 

  116. Bazulin, E.G., Determination of the defect type by using the images obtained with C-SAFT with account for wave type transformation during reflection of ultrasonic pulses from uneven boundaries of the controlled object, Defectoscopy, 2011, no. 1, pp. 39–56.

    Google Scholar 

  117. von Bernus, L., Bulavinov, A., Joneit, D., Kröning, M., Dalichov, M., and Reddy, K.M., Sampling phased array: A new technique for signal processing and ultrasonic imaging, Proc. 9th ECNDT, Berlin, 2006, We. 3.1.2.

    Google Scholar 

  118. Voronkov, V.A., Voronkov, I.V., Kozlov, V.N., Samokrutov, A.A., and Shevaldykin, V.G., About applicability of antenna array technology in problems of ultrasonic testing of hazardous industry objects, In the World of Nondestructive Testing, 2011, vol. 51, no. 1, pp. 64–70.

    Google Scholar 

  119. de la Haza, A.O., Samokrutov, A.A., and Samokrutov, P.A., Assessment of concrete structures using the Mira and Eyecon ultrasonic shear wave devices and the SAFT-C image reconstruction technique, Proc. 25th Anniv. Session for ACI 228—Building on the Past for the Future of NDT of Concrete. Constr. Build. Mater., 2013, vol. 38, pp. 1276–1291.

    Google Scholar 

  120. Kotoky, N. and Shekhar, Sh., Damage identification using SAFT algorithm, Int. J. Innov. Res. Sci. Eng. Technnol., 2014, vol. 3, no. 4, pp. 194–199.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kozlov.

Additional information

Original Russian Text © A.V. Kozlov, V.N. Kozlov, 2015, published in Defektoskopiya, 2015, Vol. 51, No. 6, pp. 3–14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, A.V., Kozlov, V.N. The development and current state of methods for the nondestructive testing and acoustic tomography of concrete. Russ J Nondestruct Test 51, 329–337 (2015). https://doi.org/10.1134/S1061830915060054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830915060054

Keywords

Navigation