Skip to main content
Log in

On the efficiency of application of magnetic and electrical parameters for nondestructive testing of crystal-lattice microdistortions in heat-treated carbon steels

  • Magnetic Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

The effect of crystal-lattice microdistortions that characterize residual stresses in heat-treated steels that contain 0.36, 0.62, and 0.75% carbon on their magnetic characteristics, in particular, magnetic Barkhausen noise parameters, electrical resistivity, and elastic wave propagation velocity, which was determined by the electromagnetic acoustic transformation (EMAT) method, was studied. The coercive force and number of Barkhausen jumps for hardened steels are shown to correlate, to a great extent, with the average grain size rather than with crystal-lattice mirodistortions. Crystal-lattice microdistortions induced in steels upon hardening from different temperatures correlate adequately with the root-mean-square magnetic Barkhausen noise (RMS BN) voltage. When estimating crystallattice microdistortions in articles made from carbon steels subjected to marquenching and subsequent tempering, the combined use of the coercive force (for steels after low- and medium-temperature tempering) and RMS BN voltage (for steels after high-temperature tempering) is most efficient. Such parameters as the number of Barkhausen jumps, electrical resistivity, and elastic wave propagation velocity are less sensitive to changes in crystal-lattice microdistortions (CLMs) in heat-treated carbon steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sokolov, I.A. and Ural’skii, V.I., Ostatochnye napryazheniya i kachestvo metalloproduktsii (Residual Stresses and Quality of Metal Production), Moscow: Metallurgiya, 1981.

    Google Scholar 

  2. Birger, I.A., Ostatochnye napryazheniya (Residual Stresses), Moscow: Mashizdat, 1963.

    Google Scholar 

  3. ASTM E1685-00, “Standard Practice for Measuring the Change in Length of Fasteners Using the Ultrasonic Pulse-Echo Technique”, ASTM International, 2006.

  4. ASTM E915-96, “Standard Test Method of Verifying Alignment of X-Ray Diffraction Instrumentation for Residual Stress Measurements”, ASTM International, 2002.

  5. Mikheev, M.N. and Gorkunov, E.S., Magnitnye metody strukturnogo analiza i nerazrushayushchego kontrolya (Magnetic Methods for Structural Analysis and Nondestructive Testing), Moscow: Nauka, 1993.

    Google Scholar 

  6. Moorthy, V., Shaw, B.A., Mountford, P., and Hopkins, P., Magnetic Barkhausen Emission Technique for Evaluation of Residual Stress Alteration by Grinding in Case-Carburised En36 Steel, Acta Materialia, 2005, vol. 53, pp. 4997–5006.

    Article  CAS  Google Scholar 

  7. Lindgren, M. and Lepsito, T., Relation between Residual Stress and Barkhausen Noise in a Duplex Steel, NDT&E International, 2003, vol. 36, no. 5, pp. 279–288.

    Article  CAS  Google Scholar 

  8. Altpeter, I., Dobmann, G., Kroning, M., Rabung, M., and Szielasko, S., Micro-Magnetic Evaluation of Micro Residual Stresses of the II-nd and III-rd Order, NDT&E International, 2009, vol. 42, pp. 283–290.

    Article  CAS  Google Scholar 

  9. Yelbay, H.I., Cam, I., and Gur, C.H., Nondestructive Determination of Residual Stress State in Steel Weldments by Magnetic Barkhausen Noise Technique, NDT&E International, 2010, vol. 43, pp. 29–33.

    Article  Google Scholar 

  10. Marochnik stalei i splavov (Steel and Alloy Grades), Sorokin, V.G., Ed., Moscow: Mashinostroenie, 1989.

    Google Scholar 

  11. Vel’chenko, G.I. and Gubenko, S.I., Nemetallicheskie vklyucheniya i kachestvo stali (Nonmetallic Inclusions and Steel Quality), Kiev: Tekhnika, 1980.

    Google Scholar 

  12. Gudremon, E.Yu., Spetsial’nye stali (Special Steels), Moscow: Metallurgizdat, 1959, vol. 1.

    Google Scholar 

  13. Kuznetsov, I.A. and Skripova, N.I., Magnetic, Electrical, and Mechanical Properties of Hardened and Tempered 65 Magnitye, magnitomekhanicheskie i electricheskie svoistva ferromagnetikov (Magnetic, Magneto-Mechanical, and Electrical Properties of Ferromagnets), Sverdlovsk: Ural’skii gosudarstvennyi universitet, 1975, pp. 31–37.

    Google Scholar 

  14. Rusakov, A.A., Rentgenografiya metallov (X-ray Analysis of Metals), Moscow: Atomizdat, 1977.

    Google Scholar 

  15. Mirkin, L.I., Rentgenostrukturnyi kontrol’ mashinostroitel’nykh materialov: spravochnik (X-ray Diffraction Testing of Engineering Materials: Handbook), Moscow: Izdatel’stvo MGU, 1976.

    Google Scholar 

  16. Apaev, B.A., Fazovyi magnitnyi analiz splavov (Phase Magnetic Analysis of Alloys), Moscow: Metallurgiya, 1972.

    Google Scholar 

  17. Makarov, A.V., Gorkunov, E.S., Kogan, L.Kh., and Kolobylin, Yu.M., Coercive-Force and Eddy-Current Testing of the Abrasive Wear Resistance of Quenched and Tempered Hypereutectoid Carbon Steels: II. Steels Subjected to Different Quenching Regimes, Subzero Treatment, and Tempering after High-Temperature Quenching, Defektoskopiya, 2007, no. 5, pp. 12–29 [Rus. J. Nondestr. Test. (Engl. Transl.), 2007, vol. 43, no. 5, 288–301].

  18. Kogan, L.Kh., Nichipuruk, A.P., and Gavrilova, L.D., Effect of the Carbon Content on the Magnetic and Electric Properties of Thermally Treated Carbon Steels and the Possibilities of Testing the Quality of Tempering of Articles Produced from Them via the Eddy-Current Method, Defektoskopiya, 2006, no. 9, pp. 72–90 [Rus. J. Nondestr. Test. (Engl. Transl.), 2006, vol. 42, no. 9, 616–629].

  19. Bida, G.V., Magnetic Quality Control of Hardened and Tempered Parts Made of Carbon and Low-Alloyed Steels (Review), Defektoskopiya, 2006, no. 7, pp. 15–27 [Rus. J. Nondestr. Test. (Engl. Transl.), 2006, vol. 42, no. 7, 433–442].

  20. Gorkunov, E.S., Drogashanskii, Yu.N., and Mikhovski, M., Barkhausen Effect and Its Application for Evaluation of Ferromagnetic Materials Structure (Review IV). Effect of Carbon Content and Alloying Elements, Defektoskopiya, 1999, no. 12, pp. 3–24.

  21. Kurdyumov, G.V., Utevskii, L.M., and Entin, R.I., Prevrashcheniya v zheleze i stali (Transformations in Iron and Steel), Moscow: Nauka, 1977.

    Google Scholar 

  22. Lysak, L.I., Analysis of Second-Order Stresses in α Phase in Hardened and Tempered Steel, Izv. Akad. Nauk SSSR, Ser. Fiz., 1956, vol. 20, no. 6, pp. 66–73.

    Google Scholar 

  23. Murav’ev, V.V., Zuev, L.B., and Komarov, K.L., Skorost’ zvuka i struktura stalei i splavov (Sonic Speed and Structure of Steels and Alloys), Novosibirsk: Nauka, 1996.

    Google Scholar 

  24. Levitan, L.Ya., Fedorchenko, A.N., and Sharko, A.V., Effect of Heat Treatment Conditions on Acoustic Characteristics of Carbon Steels, Defektoskopiya, 1980, no. 9, pp. 52–57.

  25. Kersten, M., Zur Theorie der ferromagnetischen Hysterese und der Anfangspermeabilitat, Phys. Ztschr., 1943, vol. 44, pp. 63–77.

    Google Scholar 

  26. Drapkin, B.M. and Fokin, B.V., On the Young Modulus of Cementite, Fiz. Met. Metalloved., 1980, vol. 49, no. 3, pp. 649–651.

    CAS  Google Scholar 

  27. Aleshin, N.P., Belyi, V.E., Vopilkin, A.Kh., et al., Metody akusticheskogo kontrolya metallov (Acoustic Inspection Methods for Metals), Moscow: Mashinostroenie, 1989.

    Google Scholar 

  28. Tablitsy fizicheskikh velichin. Spravochnik (Tables of Physical Quantities. Handbook) Kikoin, I.K, Ed., Moscow: Atomizdat, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Gorkunov.

Additional information

Original Russian Text © E.S. Gorkunov, S.M. Zadvorkin, L.S. Goruleva, A.B. Bukhvalov, 2012, published in Defektoskopiya, 2012, Vol. 48, No. 3, pp. 27–39.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorkunov, E.S., Zadvorkin, S.M., Goruleva, L.S. et al. On the efficiency of application of magnetic and electrical parameters for nondestructive testing of crystal-lattice microdistortions in heat-treated carbon steels. Russ J Nondestruct Test 48, 166–175 (2012). https://doi.org/10.1134/S1061830912010056

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830912010056

Keywords

Navigation