Skip to main content
Log in

Integro-differential Equations and Hereditary Systems: From Functional and Analytical Methods to Wavelets, Neural Networks, and Fuzzy Kernels

  • Applied Problems
  • Published:
Pattern Recognition and Image Analysis Aims and scope Submit manuscript

Abstract

This review is oriented to the works of authors who have substantially contributed to the research area of integro-differential equations and hereditary systems both from the fundamental theoretical viewpoint and in the sense of the constructing of analytic tools and computational procedures. Works reflecting functional results in the specified area and describing analytic research methods and numerical algorithms are presented. Modern trends in the area of integro-differential equations related to wavelets, neural networks, and the theory of fuzzy sets are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Volterra, Theory of Functionals and of Integral and Integro-Differential Equations (Blackie, London, 1930; Nauka, Moscow, 1982).

    Google Scholar 

  2. A. Germani, C. Manes, and P. Pepe, “A twofold spline approximation for finite horizon LQG control of hereditary systems”, SIAM J. Control Optim. 39 (4), 1233–1295 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  3. E. N. Chukwu, Stability and Time-Optimal Control of Hereditary Systems: With Application to the Economic Dynamics of the US, 2nd ed. (World Scientific, Singapore, 2001).

    Book  MATH  Google Scholar 

  4. I. N. Sinitsyn, “Methods for information model building for the Earth tidal hereditary irregular rotation”, Inform. Primen. (Inf. Appl.) 3 (1), 2–7 (2009) [in Russian].

    Google Scholar 

  5. M. C. Delfour, “The largest class of hereditary systems defining a C0 semigroup on the product space”, Can. J. Math. 32 (4), 969–978 (1980).

    Article  MATH  Google Scholar 

  6. A. S. C. Sinha, “Stability of large-scale hereditary systems with infinite retardations”, Int. J. Syst. Sci. 12 (1), 111–117 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Colonius, “The maximum principle for relaxed hereditary differential systems with function space end condition”, SIAM J. Control Optim. 20 (5), 695–712 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  8. F. H. Clarke and P. R. Wolenski, “Necessary conditions for functional differential inclusions”, Appl. Math. Optim. 34 (1), 51–78 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  9. J. A. Reneke and R. E. Fennell, “Response feedback stabilization of linear hereditary systems”, in Analysis and Optimization of Systems, Ed. by A. Bensoussan and J. L. Lions, Lecture Notes in Control and Information Sciences (Springer, Berlin, Heidelberg, 1986), Vol. 83, pp. 547–554.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. C. Reber, “Optimal control of nonlinear hereditary systems”, J. Differ. Equations 68 (1), 22–35 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  11. J. A. Reneke and A. K. Bose, “Conditions yielding weak controllability for a class of linear hereditary systems”, in Analysis and Optimization of Systems, Ed. by A. Bensoussan and J. L. Lions, Lecture Notes in Control and Information Sciences (Springer, Berlin, 1990), Vol. 144, pp. 632–641.

    MathSciNet  MATH  Google Scholar 

  12. F. Abrishamkar and M. Shiva, “Convergent sampling of continuous time hereditary stochastic systems”, J. Math. Anal. Appl. 154 (2), 329–340 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  13. V. B. Kolmanovskii and A. I. Matasov, A.I. “Minimax filtering problems in hereditary systems: A new approach to approximate solution”, Automat. Remote Control 57 (6, Part 2), 871–889 (1996).

    MathSciNet  MATH  Google Scholar 

  14. N. Yu. Lukoyanov, “Minimax solutions of functional equations of the Hamilton-Jacobi type for hereditary systems”, Differ. Equations 37 (2), 246–256 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  15. N. Yu. Lukoyanov, “The Hamilton-Jacobi equation for hereditary systems: Minimax and viscosity solutions”, Doklady Math. 77 (1), 51–54 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Zitek, “Frequency-domain synthesis of hereditary control systems via anisochronic state space”, Int. J. Control 66 (4), 539–556 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Marcelli and A. Salvadori, “On the equivalence of different classes of hereditary systems”, Nonlinear Anal.: Theory, Methods Appl. 30 (6), 3903–3907 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Marcelli and A. Salvadori, “Equivalence of different hereditary structures in ordinary differential equations”, J. Differ. Equations 149 (1), 52–68 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  19. J.-Y. Ouvrard, “Martingale projection and linear filtering in Hilbert spaces. I: The theory”, SIAM J. Control Optim. 16 (6), 912–937 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  20. J.-Y. Ouvrard, “Linear filtering in Hilbert spaces. II: An application to the smoothing theory for hereditary systems with observation delays”, SIAM J. Control Optim. 16 (6), 938–952 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  21. K. L. Teo, Z. S. Wu, and D. J. Clements, “A computational method for convex optimal control problems involving linear hereditary systems”, Int. J. Syst. Sci. 12 (9), 1045–1060 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  22. F. Colonius, “Stable and regular reachability for relaxed hereditary differential systems”, SIAM J. Control Optim. 20 (5), 675–694 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  23. F. Colonius, “Addendum: Stable and regular reachability of relaxed hereditary differential systems”, SIAM J. Control Optim. 23 (5), 803–807 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  24. S. L. Benz, R. E. Fennell, and J. A. Reneke, “Hereditary systems: approximate solutions and parameter estimation”, Applicable Anal. 17 (2), 135–156 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  25. P. K. Lamm, “Spline approximations for nonlinear hereditary control systems”, J. Optim. Theory Appl. 44 (4), 585–624 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Bagchi, “Identification of a hereditary system with distributed delay”, Syst. Control Lett. 5 (5), 339–345 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  27. I. N. Sinitsyn, “Stochastic hereditary control systems”, Probl. Control Inf. Theory 15 (4), 287–298 (1986).

    MathSciNet  MATH  Google Scholar 

  28. J. A. Reneke and J. R. Brannan, “Application of RKH space methods to the filtering problem forlinear hereditary systems”, in Analysis and Optimization of Systems, Ed. by A. Bensoussan and J. L. Lions, Lecture Notes in Control and Information Sciences (Springer, Berlin, Heidelberg, 1988), Vol. 111, pp. 713–724.

    Article  Google Scholar 

  29. T. Sasagawa, “Mean-square asymptotic stability of linear hereditary systems”, Int. J. Syst. Sci. 19 (6), 935–944 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  30. G. Tadmor, “Trajectory stabilizing controls in hereditary linear systems”, SIAM J. Control Optim. 26 (1), 138–154 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  31. K. Ito, “On the regularity of solutions of an operator Riccati equation arising in linear quadratic optimal control problems for hereditary differential systems”, J. Math. Anal. Appl. 140 (2), 396–406 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  32. V. B. Kolmanovskii and L. E. Shaikhet, “States estimate of hereditary stochastic systems,” Stochast. Anal. Appl. 7 (4), 387–411 (1989).

    Article  MathSciNet  Google Scholar 

  33. J. A. Reneke and R. E. Fennell, “Parameter estimation for stochastic linear hereditary systems”, in Proc. 30th IEEE Conf. on Decision and Control (Brighton, 1991), Vol. 2, pp. 2026–2027.

    Article  Google Scholar 

  34. M. De la Sen, “Absolute stability and hyperstability of a class of hereditary systems”, in Proc. 31st IEEE Conf. on Decision and Control (Tucson, AZ, 1992), Vol. 1, pp. 725–730.

    Google Scholar 

  35. M. De la Sen, “Relations between the stabilization properties of two classes of hereditary linear systems with commensurate delays”, Int. J. Syst. Sci. 23 (6), 1667–1691 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  36. J. S. Lee and P. K. C. Wang, “Decentralized feedback stabilization of linear hereditary systems,” in Proc. 31st IEEE Conf. on Decision and Control (Tucson, AZ, 1992), Vol. 2, pp. 1321–1326.

    Google Scholar 

  37. A. Manitius and H. T. Tran, “Numerical approximations for hereditary systems with input and output delays: Convergence results and convergence rates”, SIAM J. Control Optim. 32 (5), 1332–1363 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Germani, C. Manes, and P. Pepe, “Numerical solution for optimal regulation of stochastic hereditary systems with multiple discrete delays”, in Proc. 34th IEEE Conf. on Decision and Control (New Orleans, LA, 1995), Vol. 2, pp. 1497–1502.

    Google Scholar 

  39. V. B. Kolmanovskii, “On the stability of some systems with aftereffect”, Automat. Remote Control 54 (11), 1612–1623 (1993).

    MathSciNet  Google Scholar 

  40. V. B. Kolmanovskii, “On the application of the Lyapunov second method to the Volterra difference equations”, Automat. Remote Control 56 (11), 1545–1556 (1995).

    MathSciNet  Google Scholar 

  41. V. B. Kolmanovskii and A. M. Rodionov, “On the stability of certain discrete Volterra processes”, Automat. Remote Control 56 (2), 151–159 (1995).

    MathSciNet  Google Scholar 

  42. V. B. Kolmanovskii and L. E. Shaikhet, “Asymptotic behavior of certain discrete-time systems,” Automat. Remote Control 57 (12), 1735–1742 (1996).

    MathSciNet  Google Scholar 

  43. V. B. Kolmanovskii, “On the exponential stability of some difference Volterra equations”, Automat. Remote Control 58 (7), 1216–1223 (1997).

    MathSciNet  Google Scholar 

  44. V. B. Kolmanovskii, “On the boundedness of some discrete systems”, Automat. Remote Control 58 (4), 617–626 (1997).

    MathSciNet  Google Scholar 

  45. V. B. Kolmanovskii, “The stability of hereditary systems of neutral type”, J. Appl. Math. Mech. 60 (2), 205–216 (1996).

    Article  MathSciNet  Google Scholar 

  46. M. R. Crisci, V. B. Kolmanovskii, E. Russo, and A. Vecchio, “Stability of difference Volterra equations: Direct Liapunov method and numerical procedure”, Computers Math. Appl. 36 (10–12), 77–97 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  47. A. A. Kovalev, V. B. Kolmanovskii, and L. E. Shaikhet, “The Riccati equations in the stability of stochastic linear systems with delay”, Automat. Remote Control 59 (10), 1379–1394 (1998).

    MathSciNet  MATH  Google Scholar 

  48. V. B. Kolmanovskii, “On the boundedness of some Volterra systems with dissipative nonlinearity”, Automat. Remote Control 60 (3), 413–423 (1999).

    MathSciNet  MATH  Google Scholar 

  49. E. V. Ivinskaya and V. B. Kolmanovskii, “On the boundedness of solutions of some Volterra difference equations”, Automat. Remote Control 61 (8), 1317–1327 (2000).

    MathSciNet  MATH  Google Scholar 

  50. V. Kolmanovskii and L. Shaikhet, “Construction of Lyapunov functionals for stochastic hereditary systems: A survey of some recent results”, Math. Comput. Modell. 36 (6), 691–716 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  51. V. B. Kolmanovskii, “On the stability of solutions of some Volterra difference equations”, Automat. Remote Control 61 (11), 1885–1891 (2000).

    MathSciNet  Google Scholar 

  52. V. B. Kolmanovskii, “On asymptotic equivalence of the solutions of some Volterra difference equations”, Automat. Remote Control 62 (4), 548–556 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  53. V. B. Kolmanovskii, “On asymptotic properties of solutions of some nonlinear Volterra systems”, Automat. Remote Control 61 (4), 577–584 (2000).

    MathSciNet  Google Scholar 

  54. V. B. Kolmanovskii, “On Limit Periodicity of the Solutions of Some Volterra Systems”, Automat. Remote Control 62 (5), 36–43 (2001).

    Article  MathSciNet  Google Scholar 

  55. K. Nitka-Styczeń, “The heredity shift operator in descent approach to the optimal periodic hereditary control problem”, Int. J. Syst. Sci. 28 (7), 705–719 (1988).

    Article  MATH  Google Scholar 

  56. V. Kolmanovskii, A. Matasov, and P. Borne, “Meansquare filtering problem in hereditary systems with nonzero initial conditions”, IMA J. Math. Control Inform. 19 (1,2), 25–48 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  57. Y. Ohta, K. Tsuji, and T. Matsumoto, “On the use of piecewise linear M- and M0-functions for stability analysis of nonlinear composite hereditary systems”, Dyn. Contin. Discrete Impuls. Syst. Ser. A: Math. Anal. 11 (2–3), 269–285 (2004).

    MathSciNet  MATH  Google Scholar 

  58. V. B. Kolmanovskii, “Robust stability of Volterra discrete equations under perturbations of their kernels”, Dyn. Syst. Appl. 15 (3–4), 333–342 (2006).

    MathSciNet  Google Scholar 

  59. G. S. Ladde, “Large-scale stochastic hereditary systems under Markovian structural perturbations. Part III. Qualitative analysis”, J. Appl. Math. Stoch. Anal. 2006, Article ID 24643, 1–10 (2006).

    MathSciNet  MATH  Google Scholar 

  60. S. V. Pavlikov, “The stability of motions of hereditary systems with infinite delay”, Doklady Math. 76 (2), 678–680 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  61. I. N. Sinitsyn, “Analysis and modeling of distributions in hereditary stochastic systems”, Inform. Primen. (Inf. Appl.) 8 (1), 2–11 (2014) [in Russian].

    Google Scholar 

  62. I. N. Sinitsyn, “Analytical modeling of distributions with invariant measure in non-gaussian differential and reducable to differential hereditary stochastic systems”, Inform. Primen. (Inf. Appl.) 8 (2), 2–14 (2014) [in Russian].

    Google Scholar 

  63. I. N. Sinitsyn, I. V. Sergeev, V. I. Sinitsyn, E. R. Korepanov, V. V. Belousov, and V. S. Shorgin, “Software for syntesis of discrete Pugachev filters for normal processes in hereditary stochastic systems”, Sist. Sred. Inform. (Syst. Means Inf.) 25 (2), 20–59 (2015) [in Russian].

    Google Scholar 

  64. S. Yousefi and M. Razzaghi, “Legendre wavelets method for the nonlinear Volterra–Fredholm integral equations”, Math. Comput. Simul. 70 (1), 1–8 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  65. J. Biazar and H. Ebrahimi, “Chebyshev wavelets approach for nonlinear systems of Volterra integral equations”, Comput. Math. Appl. 63 (3), 608–616 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  66. I. Aziz and Siraj-ul Islam, “New algorithms for the numerical solution of nonlinear Fredholm and Volterra integral equations using Haar wavelets”, J. Comput. Appl. Math. 239, 333–345 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  67. S. Effati and R. Buzhabadi, “A neural network approach for solving Fredholm integral equations of the second kind”, Neural Comput. Appl. 21 (5), 843–852 (2012).

    Article  Google Scholar 

  68. A. Jafarian and S. Measoomy Nia, “Utilizing feed-back neural network approach for solving linear Fredholm integral equations system”, Appl. Math. Modell. 37 (7), 5027–5038 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  69. A. Jafarian, S. Measoomy, and S. Abbasbandy, “Artificial neural networks based modeling for solving Volterra integral equations system”, Appl. Soft Comput. 27, 391–398 (2015).

    Article  Google Scholar 

  70. J. Y. Park and J. U. Jeong, “On the existence and uniqueness of solutions of fuzzy Volterra-Fredholm integral equations”, Fuzzy Sets Syst. 115 (3), 425–431 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  71. S. Hajighasemi, T. Allahviranloo, M. Khezerloo, M. Khorasany, and S. Salahshour, “Existence and uniqueness of solutions of fuzzy Volterra integro-differential equations”, in Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications (IPMU 2010), Ed. by E. Hüllermeier, R. Kruse, and F. Hoffmann, Communications in Computer and Information Science (Springer, Berlin, Heidelberg, 2010), Vol. 81, pp. 491–500.

    MATH  Google Scholar 

  72. T. Allahviranloo, M. Khezerloo, O. Sedaghatfar, and S. Salahshour, “Toward the existence and uniqueness of solutions of second-order fuzzy Volterra integro-differential equations with fuzzy kernel”, Neural Comput. Appl. 22 (Suppl. 1), S133–S141 (2013).

    Article  Google Scholar 

  73. S. Salahshour and T. Allahviranloo, “Application of fuzzy differential transform method for solving fuzzy Volterra integral equations”, Appl. Math. Modell. 37 (3), 1016–1027 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  74. H. S. Goghary and M. S. Goghary, “Two computational methods for solving linear Fredholm fuzzy integral equation of the second kind”, Appl. Math. Comput. 182 (1), 791–796 (2006).

    MathSciNet  MATH  Google Scholar 

  75. A. M. Bica and C. Popescu, “Numerical solutions of the nonlinear fuzzy Hammerstein-Volterra delay integral equations”, Inf. Sci. 223, 236–255 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  76. M. Otadi and M. Mosleh, “Universal approximation method for the solution of integral equations”, Math. Sci. 11 (3), 181–187 (2017).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Gorshenin.

Additional information

Andrey Konstantinovich Gorshenin. Born in 1986. Candidate of Science (PhD) in physics and mathematics (Probability theory and mathematical statistics, Lomonosov Moscow State University, 2011); associate professor (Mathematical modeling, numerical methods, and software systems, 2017); leading scientist, Institute of Informatics Problems, Computer Science and Control Federal Research Center of the Russian Academy of Sciences; senior scientist, P.P. Shirshov Institute of Oceanology of the Russian Academy of Sciences. Specialist degree with honors in applied mathematics and computer science (Faculty of Computational Mathematics and Cybernetics of Lomonosov Moscow State University, 2008). Fields of research interest: probability theory, mathematical statistics, computer sciences, modelling of real processes, EM algorithms, method of moving separation of mixtures of probability distributions, Big Data, data visualization, mathematical modelling, neural networks. Author of 120 research papers and textbooks, 55 certificates of state registration of computer programs. Academic Expert of the National Research University Higher School of Economics (Moscow, Russia), Expert of the Russian Academy of Sciences (Moscow, Russia), External Expert of the Foundation for Assistance to Small Innovative Enterprises (Moscow, Russia), Member of the Skolkovo Expert Panel (Moscow, Russia). Member of the editorial board of peer-reviewed journal “Systems and Means оf Informatics.” Member of the Coordination Council for Youth Affairs in the Sphere of Science and Education under the Presidential Council for Science and Education. Awards: Presidential Grant for Government Support of Young Russian Scientists (2014–2025), Russian Academy of Sciences Medal with the Prize for Young Scientists (2015), Scholarship of the President of the Russian Federation for Young Scientists and Postgraduates (2018–2020). Grant supervisor (Russian Foundation for Basic Research, Presidential Grant for Government Support of Young Russian Scientists).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorshenin, A.K. Integro-differential Equations and Hereditary Systems: From Functional and Analytical Methods to Wavelets, Neural Networks, and Fuzzy Kernels. Pattern Recognit. Image Anal. 28, 462–467 (2018). https://doi.org/10.1134/S1054661818030070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054661818030070

Keywords

Navigation