Skip to main content
Log in

Highly efficient CW intracavity frequency-doubled Yb:YAG-LBO laser at 515 nm under 968 nm diode laser pumping

  • Solid State and Liquid Lasers
  • Published:
Laser Physics

Abstract

We describe the output performances of the 1030 nm transition in Yb:YAG under in-band pumping with diode laser at the 968 nm wavelength. An end-pumped Yb:YAG crystal yielded 1.93 W of continuous-wave (CW) output power for 9.1 W of absorbed pump power. The slope efficiency with respect to the absorbed pump power was 23.6%. Furthermore, 205 mW 515 nm green light was acquired by frequency doubling, resulting in an optical-to-optical efficiency with respect to the absorbed pump power of 2.7%. Comparative results obtained for the pump with diode laser at 940 nm are given in order to prove the advantages of the in-band pumping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Gao, X. Yu, F. Chen, X. D. Li, R. P. Yan, Z. Zhang, J. H. Yu, and Y. Z. Wang, Laser Phys. Lett. 5, 577 (2008).

    Article  ADS  Google Scholar 

  2. H. Y. Zhu, Y. M. Duan, G. Zhang, C. H. Huang, Y. Wei, W. D. Chen, H. Y. Wang, and G. Qiu, Laser Phys. Lett. 7, 703 (2010).

    Article  ADS  Google Scholar 

  3. Y. F. Lü, J. Xia, W. B. Cheng, J. F. Chen, G. B. Ning, and Z. L. Liang, Opt. Lett. 35, 3670 (2010).

    Article  ADS  Google Scholar 

  4. Y. F. Lü, X. H. Zhang, J. Xia, A. F. Zhang, X. D. Yin, and L. Bao, Laser Phys. Lett. 6, 796 (2009).

    Article  ADS  Google Scholar 

  5. E. J. Hao, T. Li, H. M. Tan, L. Q. Zhang, and Y. Zhang, Laser Phys. 19, 1953 (2009).

    Article  ADS  Google Scholar 

  6. J. Gao, X. Yu, X. D. Li, F. Chen, K. Zhang, R. P. Yan, J. H. Yu, and Y. Z. Wang, Laser Phys. 19, 111 (2009).

    Article  ADS  Google Scholar 

  7. F. Q. Jia, Laser Phys. 20, 1559 (2010).

    Article  ADS  Google Scholar 

  8. B. T. Zhang, J. F. Yang, J. L. He, H. T. Huang, X. L. Dong, J. L. Xu, C.-H. Zuo, and K. J. Yang, Laser Phys. 19, 1389 (2009).

    Article  ADS  Google Scholar 

  9. Y. F. Lü, J. Lu, L. J. Xu, G. C. Sun, Z. M. Zhao, X. Gao, and J. Q. Lin, Laser Phys. Lett. 7, 719 (2010).

    Article  ADS  Google Scholar 

  10. W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer, Berlin, 1999), p. 84.

    MATH  Google Scholar 

  11. L. Chao, X. Zhen, J. Li, N. Wu, and S. Li, Chin. J. Quantum Electron. 19, 104 (2002).

    Google Scholar 

  12. X. Shan, X. Wei, N. Wu, and S. Li, Chin. J. Quantum Electron. 21, 587 (2004).

    Google Scholar 

  13. X. Li, X. Shi, P. Shi, M. Guo, G. Zhang, Y. Lu, and Q. Hu, Acta Opt. Sinica 2, 1268 (2001).

    Google Scholar 

  14. A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B 58, 365 (1994).

    Article  ADS  Google Scholar 

  15. K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hügel, IEEE J. Quantum Electron. 29, 697 (1999).

    Article  Google Scholar 

  16. M. P. Thirugnanasambandam, Yu. Senatsky, and K. Ueda, Laser Phys. Lett. 7, 637 (2010).

    Article  ADS  Google Scholar 

  17. J. Dong, K. Ueda, H. Yagi, A. A. Kaminskii, and Z. Cai, Laser Phys. Lett. 6, 282 (2009).

    Article  ADS  Google Scholar 

  18. J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, Laser Phys. 20,1079 (2010).

    Article  ADS  Google Scholar 

  19. Yu. Senatsky, J.-F. Bisson, A. Shelobolin, A. Shirakawa, and K. Ueda, Laser Phys. 19, 911 (2009).

    Article  ADS  Google Scholar 

  20. H. Z. Cao, F. J. Liu, H. M. Tan, H. Y. Peng, M. H. Zhang, Y. Q. Chen, B. Zhang, B. L. Chen, and C. J. Wang, Laser Phys. 19, 919 (2009).

    Article  ADS  Google Scholar 

  21. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, Opt. Lett. 16, 1089 (1991).

    Article  ADS  Google Scholar 

  22. B. Zhou, Z. Wei, Y. Zou, Y. Zhang, X. Zhong, G. L. Bourdet, and J. Wang, Opt. Lett. 35, 288 (2010).

    Article  ADS  Google Scholar 

  23. X. Guo, W. Hou, H. Peng, H. Zhang, G. Wang, Y. Bi, A. Geng, Y. Chen, D. Cui, and Z. Xu, Opt. Commun. 267, 451 (2006).

    Article  ADS  Google Scholar 

  24. T. Yubing, T. Huiming, C. Hongzhong, and M. Jieguang, Laser Phys. 18, 15 (2008).

    Article  ADS  Google Scholar 

  25. Y. B. Tian, Z. H. Tian, H. M. Tan, and X. Y. Liu, Laser Phys. 20, 793 (2010).

    Article  ADS  Google Scholar 

  26. V. Lupei, N. Pavel, and T. Taira, Appl. Phys. Lett. 80, 4309 (2002).

    Article  ADS  Google Scholar 

  27. V. Lupei, N. Pavel, and T. Taira, Opt. Lett. 26, 1678 (2001).

    Article  ADS  Google Scholar 

  28. S. Bjurshagen, R. Koch, and F. Laurell, Opt. Commun. 261, 109 (2006).

    Article  ADS  Google Scholar 

  29. Y. Sato, T. Taira, N. Pavel, and V. Lupei, Appl. Phys. Lett. 82, 844 (2003).

    Article  ADS  Google Scholar 

  30. X. Ding, R. Wang, H. Zhang, X. Y. Yu, W. Q. Wen, P. Wang, and J. Q. Yao, Opt. Commun. 282, 981 (2009).

    Article  ADS  Google Scholar 

  31. Y. F. Lü, X. H. Zhang, S. T. Li, J. Xia, W. B. Cheng, and Z. Xiong, Opt. Lett. 35, 2964 (2010).

    Article  ADS  Google Scholar 

  32. V. Lupei, N. Pavel, Y. Sato, and T. Taira, Opt. Lett. 28, 2366 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Sun.

Additional information

Original Text © Astro, Ltd., 2011.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, G.C., Li, Y.D., Zhao, M. et al. Highly efficient CW intracavity frequency-doubled Yb:YAG-LBO laser at 515 nm under 968 nm diode laser pumping. Laser Phys. 21, 883–886 (2011). https://doi.org/10.1134/S1054660X11090246

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X11090246

Keywords

Navigation