Skip to main content
Log in

Modeling of the processes of laser-nanoparticle interaction taking into account temperature dependences of parameters

  • Interaction of Laser Radiation with Matter
  • Published:
Laser Physics

Abstract

Absorption, electron-phonon coupling and heating of nanoparticles (NPs) under action of short laser pulses on NPs and their cooling after the end of laser action usually has nonlinear character. Nonlinear electron-phonon coupling under action of pico- and femtosecond pulses on metal NPs depends on electron and lattice parameters. Optical (absorption, scattering, extinction) and thermo-physical (coefficient of thermal conductivity, heat capacity, etc.) parameters of different materials of NPs (metals, oxides, semiconductors, etc.) and environments (water, liquids, dielectrics, etc.) depend on temperature and determine nonlinear dynamics of NPs heating and cooling. It is very important to take into account the temperature dependence of optical and thermophysical parameters of NPs and surrounding media under investigation of absorption of laser radiation, electron-phonon coupling, nanoparticle (NP) heating, heat transfer and its cooling after the end of laser pulse action. Theoretical modeling of the processes of laser-NP interaction taking into account temperature dependences of parameters of NPs and environments was carried out. Influence of temperature dependences of these parameters on values and dynamics of the processes is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Adleman, D. A. Boyd, D. G. Goodwin, and D. Psaltis, Nano Lett. 9, 4417 (2009).

    Article  ADS  Google Scholar 

  2. R. Narayanan and M. A. El-Sayed, Topics Catal. 47, 15 (2008).

    Article  Google Scholar 

  3. N. Halas, Nanomedicine 4, 369 (2009).

    Article  Google Scholar 

  4. X. Huang, P. Jain, and M. A. El-Sayed, Lasers Med. Sci. 23, 217 (2008).

    Article  Google Scholar 

  5. J-W. Kim, E. Shashkov, E. Galanzha, V. Kotarigi, and V. Zharov, Lasers Surg. Med. 39, 622 (2007).

    Article  Google Scholar 

  6. V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, Laser Phys. Lett. 5, 775 (2008).

    Article  ADS  Google Scholar 

  7. E. S. Tuchina and V. V. Tuchin, Laser Phys. Lett. 7, 607 (2010).

    Article  ADS  Google Scholar 

  8. N. Zheludev, J. Opt. A: Pure Appl. Opt. 8, S1 (2006).

    Article  ADS  Google Scholar 

  9. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, Sov. Phys. JETP 39, 375 (1974).

    ADS  Google Scholar 

  10. S. Brorson, A. Kazeroonian, J. Modera, D. Face, T. Cheng, E. Ippen, M. Dresselhaus, and G. Dresselhaus, Phys. Rev. Lett. 64, 2172 (1990).

    Article  ADS  Google Scholar 

  11. N. Del Fatti, A. Arbouet, and F. Vallee, Appl. Phys. B 84, 175 (2006).

    Article  ADS  Google Scholar 

  12. F. Garwe, U. Bauerschafer, A. Csaki, A. Steinbruck, K. Ritter, and W. Fritzsche, Nanotechnology 19, 055207 (2008).

    Article  Google Scholar 

  13. F. Giammanco, E. Giorgetti, P. Marsili, and A. Giusti, J. Phys. Chem. C 114, 3354 (2010).

    Article  Google Scholar 

  14. H. Muto, K. Miajima, and F. Mafune, J. Phys. Chem. C 112, 5810 (2008).

    Article  Google Scholar 

  15. A. V. Kabashin, Laser Phys. 19, 1136 (2009).

    Article  ADS  Google Scholar 

  16. M. Watanabe, H. Takamura, and H. Sugai, Nanoscale Res. Lett. 4, 565 (2009).

    Article  ADS  Google Scholar 

  17. A. L. Stepanov, Rev. Adv. Mater. Sci. 4, 123 (2003).

    Google Scholar 

  18. A. Stalmashonak, A. Podlipensky, G. Seifert, and H. Graener, Appl. Phys. B 94, 459 (2009).

    Article  ADS  Google Scholar 

  19. A. Gaal, I. Bugar, I. Capek, L. Fialova, T. Palszegi, V. Szocs, A. Satka, and F. Uherek, Laser Phys. 19, 961 (2009).

    Article  ADS  Google Scholar 

  20. C. Hanley, J. Layne, A. Punnoose, K. Reddy, I. Co- ombs, A. Coombs, K. Feris, and D. Wingett, Nano-technology 19, 295103 (2009).

    Google Scholar 

  21. H. Zeng, W. Cai, Y. Hu, and P. Liu, J. Phys. Chem. B 109, 18260 (2005).

    Article  Google Scholar 

  22. L. Wang, W. Zhao, and W. Tan, Nano Res. 1, 99 (2008).

    Article  Google Scholar 

  23. L. Zbroniec, T. Sasaki, and N. Koshizaki, J. Ceram. Process. Res. 6, 134 (2005).

    Google Scholar 

  24. S. Khan, Y. Yuan, A. Abdolvand, M. Schmidt, P. Crouse, L. Li, Z. Liu, N. Sharp, and K. J. Watkins, Nanopart. Res. 11, 1421 (2009).

    Article  Google Scholar 

  25. F. Hajiesmaeilbaigi, A. Motamedi, and M. Ruzbehani, Laser Phys. 20, 508 (2010).

    Article  ADS  Google Scholar 

  26. C. Meier, A. Gondorf, S. Luttjohann, and A. Lorke, J. Appl. Phys. 101, 103112 (2007).

    Article  ADS  Google Scholar 

  27. R. Hergenroder, M. Miclea, and V. Hommes, Nano-technology 17, 4065 (2006).

    ADS  Google Scholar 

  28. Z. Lin and L. V. Zhigilei, Proc. SPIE 6261, 62610U (2006).

    Article  ADS  Google Scholar 

  29. Z. Lin and L. V. Zhigilei, Appl. Surf. Sci. 253, 6295 (2007).

    Article  ADS  Google Scholar 

  30. Z. Lin, L. V. Zhigilei, and V. V. Celli, Phys. Rev. B 77, 075133 (2008).

    Article  ADS  Google Scholar 

  31. Tables of Physical Quantities, Ed. by I. Grigoriev and E. Meilikhov (Atomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  32. F. Kreith and W. Z. Black, Basic Heat Transfer (Harper Row, New York, 1980).

    Google Scholar 

  33. V. K. Pustovalov and V. A. Babenko, Laser Phys. Lett. 1, 516 (2004).

    Article  ADS  Google Scholar 

  34. V. K. Pustovalov and V. A. Babenko, Laser Phys. Lett. 2, 84 (2005).

    Article  ADS  Google Scholar 

  35. P. Jain, K. Lee, I. El-Sayed, and M. El-Sayed, J. Phys. Chem. B 110, 7238 (2006).

    Article  Google Scholar 

  36. V. Pustovalov, Chem. Phys. 308, 103 (2005).

    Article  ADS  Google Scholar 

  37. W. W. Duley, Laser Processing and Analysis of Materials (Plenum, New York, 1983).

    Google Scholar 

  38. Yu. Lingart, V. Petrov, and N. Tikhonova, Teplofiz. Vysok. Temp. 20, 872 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Pustovalov.

Additional information

Original Text ¢ Astro, Ltd., 2011.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pustovalov, V.K. Modeling of the processes of laser-nanoparticle interaction taking into account temperature dependences of parameters. Laser Phys. 21, 906–912 (2011). https://doi.org/10.1134/S1054660X11090234

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X11090234

Keywords

Navigation