Skip to main content

Thermo-optical Properties of Spherical Homogeneous and Core–Shell Nanoparticles and Their Applications

  • Reference work entry
Handbook of Nanoparticles

Abstract

This review presents the results of the investigation of the interaction of optical (laser) radiation with spherical homogeneous and core–shell nanoparticles, absorption of optical radiation by nanoparticles, conversion of absorbed energy into nanoparticle thermal energy, the efficacy of nanoparticle heating itself, and heat transfer to ambient medium. Different homogeneous metallic (gold, silver, platinum, zinc, etc.) and core–shell (silica–gold, silver–gold, etc.) nanoparticles are considered. The models and results of computer and analytical calculations of nanoparticle heating by radiation pulse have been presented. The nonlinear dependences and comparative analysis of the thermo-optical properties of homogeneous and core–shell nanoparticles on parameters of radiation and nanoparticles are investigated.

The results present the platform for the applications of thermo-optical properties of nanoparticles in photothermal nanotechnology, including light-to-thermal energy conversion and solar energy harvesting, laser nanomedicine, nonlinear optical diagnostics, laser processing of nanoparticles, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.K. Pustovalov, Theoretical study of heating of spherical nanoparticle in media by short laser pulses. Chem. Phys. 308, 103–108 (2005)

    Article  Google Scholar 

  2. V. Kotaidis, A. Plech, Cavitation dynamics on the nanoscale. Appl. Phys. Lett. 87, 213102 (2005)

    Article  Google Scholar 

  3. A.O. Govorov, H.H. Richardson, Generating heat with metal nanoparticles. Nano Today 2, 30–38 (2007)

    Article  Google Scholar 

  4. G. Baffou, R. Quidant, F.J. Garcia de Abajo, Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4, 709–716 (2010)

    Article  Google Scholar 

  5. D. Erickson, D. Sinton, D. Psaltis, Optofluidics for energy applications. Nat. Photon. 5, 8–12 (2011)

    Article  Google Scholar 

  6. V. Pustovalov, L. Astafyeva, Nonlinear thermo-optical properties of two-layered spherical system of gold nanoparticle core and water vapor shell during initial stage of shell expansion. Nanoscale Res. Lett. 6, 448–456 (2011)

    Article  Google Scholar 

  7. O. Neumann, A.S. Urban, J. Day et al., Solar vapor generation enabled by nanoparticles. ACS Nano 7, 42–49 (2013)

    Article  Google Scholar 

  8. V. Pustovalov, L. Astafyeva, W. Fritzsche, Selection of thermo-optical parameter of nanoparticles for achievement of their maximal thermal energy under optical irradiation. Nano Energy 2, 1137–1141 (2013)

    Article  Google Scholar 

  9. C. Pitsillides, E. Joe, X. Wei, R. Anderson Rox, Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys. J. 84, 4023–4032 (2003)

    Article  Google Scholar 

  10. V.K. Pustovalov, V.A. Babenko, Optical properties of gold nanoparticles at laser radiation wavelengths for laser applications in nanotechnology and medicine. Laser Phys. Lett. 1, 516–520 (2004)

    Article  Google Scholar 

  11. A.M. Gobin, M. Lee, N.J. Halas et al., Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 7, 1929–1934 (2007)

    Article  Google Scholar 

  12. X. Huang, P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 23, 217–228 (2008)

    Article  Google Scholar 

  13. V.K. Pustovalov, A.S. Smetannikov, V.P. Zharov, Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses. Laser Phys. Lett. 5, 775–792 (2008)

    Article  Google Scholar 

  14. L. Kennedy, L. Bickford, N. Lewinsky et al., A new era for cancer therapy: gold nanoparticle-mediated thermal therapies. Small 7, 169–183 (2010)

    Article  Google Scholar 

  15. V. Pustovalov, L. Astafyeva, E. Galanzha, V.P. Zharov, Thermo-optical analysis and selection of the properties of absorbing nanoparticles for laser applications in cancer nanotechnology. Cancer Nanotechnol. 1, 35–46 (2010)

    Article  Google Scholar 

  16. J. Wang, J. Byrne, M. Napier, J. De Simone, More effective nanomedicine through particles design. Small 7, 1919–1931 (2011)

    Article  Google Scholar 

  17. H. Muto, K. Miyajima, F. Mafune, Mechanism of laser-induced size reduction of gold nanoparticles as studied by single and double laser pulse excitation. J. Phys. Chem. C 112, 5810–5815 (2008)

    Article  Google Scholar 

  18. A. Pyatenko, M. Yamaguchi, M. Suzuki, Mechanisms of size reduction of colloidal silver and gold nanoparticles irradiated by Nd:Yag laser. J. Phys. Chem. C 113, 9078–9085 (2009)

    Article  Google Scholar 

  19. V. Pustovalov, Modeling of the processes of laser-nanoparticle interaction taking into account temperature dependences of parameters. Laser Phys. 21, 906–912 (2011)

    Article  Google Scholar 

  20. A. Warth, J. Lange, H. Graener, G. Seifert, Ultrafast dynamics of femtosecond laser-induced shape transformation of silver nanoparticles embedded in glass. J. Phys. Chem. C 115, 23329–23337 (2011)

    Article  Google Scholar 

  21. A. Plech, V. Kotaidis, Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering. Phys. Rev. 70, 295423 (2004)

    Article  Google Scholar 

  22. S. Hashimoto, D. Werner, T. Uwada, Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication. J. Photochem. Photobiol. C 13, 28–54 (2012)

    Article  Google Scholar 

  23. V.K. Pustovalov, L.G. Astafyeva, Investigation of thermo-optical characteristics of the interaction processes of laser radiation with silver nanoparticles. Laser Phys. 23, 065901 (2013)

    Article  Google Scholar 

  24. R. Narayanan, M.A. El-Sayed, Some aspects of colloidal nanoparticle stability, catalytic activity, and recycling potential. Top. Catal. 47, 15–23 (2008)

    Article  Google Scholar 

  25. J.R. Adleman, D.A. Boyd, D.G. Goodwin, D. Psaltis, Heterogenous catalysis mediated by plasmon heating. Nano Lett. 9, 4417–4423 (2009)

    Article  Google Scholar 

  26. P. Christopher, H.L. Xin, S. Linic, Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3, 467–472 (2011)

    Google Scholar 

  27. V.P. Zharov, D.O. Lapotko, Photothermal imaging of nanoparticles and cells. Sel. Top. Quantum Electron. 11, 733–751 (2005)

    Article  Google Scholar 

  28. V. Pustovalov, L. Astafyeva, B. Jean, Computer modeling of the optical properties and heating of spherical gold and silica–gold nanoparticles for laser combined imaging and photothermal treatment. Nanotechnology 20, 225105 (2009)

    Article  Google Scholar 

  29. A. Steinbrück, O. Stranik, A. Csaki, W. Fritzsche, Sensoric potential of gold–silver core–shell nanoparticles. Anal. Bioanal. Chem. 401, 1241–1249 (2011)

    Article  Google Scholar 

  30. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Heidelberg, 1995)

    Book  Google Scholar 

  31. V. Giannini, A. Fernandez-Dominguez, S. Heck, S. Maier, Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 111, 3888–3912 (2011)

    Article  Google Scholar 

  32. I. Mayergoyz, Plasmon Resonances in Nanoparticles (World Scientific Publishing, Singapore, 2013)

    Book  Google Scholar 

  33. A. Chen, P. Holt-Hindle, Platinum-based nanostructured materials: synthesis, properties, and applications. Chem. Rev. 110, 3767–3804 (2010)

    Article  Google Scholar 

  34. M.R. Jones, K.D. Osberg, R.J. Macfarlane et al., Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev. 111, 3736–3827 (2011)

    Article  Google Scholar 

  35. M.B. Cortie, A.M. McDonagh, Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem. Rev. 111, 3713–3735 (2011)

    Article  Google Scholar 

  36. M. Rysenga, C.M. Cobley, J. Zeng, W. Li, Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669–3712 (2011)

    Article  Google Scholar 

  37. V. Pustovalov, W. Fritzsche, Nonlinear dependences of optical properties of spherical core-shell silver-gold and gold-silver nanoparticles on their parameters. Plasmonics 8, 983–993 (2013)

    Article  Google Scholar 

  38. V. Pustovalov, L. Astafyeva, W. Fritzsche, Optical properties of core-shell gold-silver and silver-gold nanoparticles for near UV and visible radiation wavelengths. Plasmonics 8, 983–993 (2012)

    Article  Google Scholar 

  39. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  40. P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6, 4370–4378 (1972)

    Article  Google Scholar 

  41. Refractive index database, http://refractiveindex.info/

  42. Z. Lin, L.V. Zhigilei, V.V. Celli, Electron–phonon coupling and electron heat capacity of metals under conditions of strong electron–phonon nonequilibrium. Phys. Rev. B 77, 075133 (2008)

    Article  Google Scholar 

  43. S.I. Anisimov, B.L. Kapeliovich, T.L. Perelman, Electron emission from metal surface under action of ultrashort laser pulses. Sov. Phys. JETP 39, 375–383 (1974)

    Google Scholar 

  44. F. Kreith, W.Z. Black, Basic Heat Transfer (Harper and Row, New York, 1980)

    Google Scholar 

Download references

Acknowledgments

I cordially thank my colleagues Dr. L. Astafyeva, Dr. A. Smetannikov, and Prof. Dr. W. Fritzsche for their collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor K. Pustovalov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Pustovalov, V.K. (2016). Thermo-optical Properties of Spherical Homogeneous and Core–Shell Nanoparticles and Their Applications. In: Aliofkhazraei, M. (eds) Handbook of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-15338-4_37

Download citation

Publish with us

Policies and ethics