Skip to main content
Log in

CO2 laser and fluoride on the inhibition of root caries—an in vitro microbial model

  • Laser Methods in Chemistry, Biology, and Medicine
  • Published:
Laser Physics

Abstract

An increase in the dental caries prevalence on root surfaces has been observed mainly in elderly. This research assessed, in vitro, the effectiveness of a pulsed CO2 (λ = 10.6 μm) laser associated or not with fluoride, in reducing human root dentine demineralization in conditions that mimic an oral high cariogenic challenge. After sterilization, root dentine specimens were randomly assigned into 6 groups (n = 30), in triplicate. The groups were Control (C), Streptococcus mutans (SM), Fluoride (F), Laser (L), Fluoride + laser (FL), and Laser + fluoride (LF). Except for the control group, all the specimens were inoculated with SM and immersed 3 times a day in a 40% sucrose bath. After a 7-day cariogenic challenge, the mineral loss and lesion depth were evaluated by transverse microradiography and fluoride in the biofilm was determined using an ion-selective electrode. Results were statistically analyzed by analysis of variance, at 5% of significance level. For groups C, SM, F, L, FL and LF, the means (standard-deviation) of mineral loss were 816.3 (552.5)a, 3291.5 (1476.2)c, 2508.5 (1240.5)bc, 2916.2 (1323.7)c, 1839.7 (815.2)b and 1955.0 (1001.4)b, respectively; while lesion depths were 39.6 (22.8)a, 103.1 (38.9)c, 90.3 (44.6)bc, 91.7 (27.0)bc, 73.3 (26.6)b, 75.1 (35.2)b, respectively (different superscript letters indicate significant differences among groups). In conclusion, irradiation of root dentine with a pulsed CO2 laser at fluency of 12.0 J/cm2 was able to inhibit root surface demineralization only when associated with fluoride. No synergy effect on the inhibition of root dentine mineral loss was provided by the combination of fluoride application and laser irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. O. Griffin, P. M. Griffin, J. L. Swann, and N. Zlobin, J. Dent. Res. 83, 634 (2004).

    Article  Google Scholar 

  2. H. Keltjens, T. Schaeken, and H. van der Hoeven, Int. Dent. J. 43, 143 (1993).

    Google Scholar 

  3. J. S. Wefel, Am. J. Dent. 7, 261 (1994).

    Google Scholar 

  4. J. D. B. Featherstone, Am. J. Dent. 7, 271 (1994).

    Google Scholar 

  5. O. Fejerskov and B. Nyvad, in Textbook of Geriatric Dentistry, Ed. by P. Holm-Pedersen and H. Löe (Munksgaard, Copenhagen, 1996), p. 584.

    Google Scholar 

  6. A. S. Blinkhorn and R. M. Davies, Int. Dent. J. 46, 119 (1996).

    Google Scholar 

  7. D. Bakhmutov, S. Gonchukov, O. Kharchenko, O. Voytenok, and B. Zubov, Laser Phys. Lett. 5, 375 (2008).

    Article  Google Scholar 

  8. A. Z. Freitas, D. M. Zezell, M. P. A. Mayer, A. C. Ribeiro, A. S. L. Gomes, and N. D. Vieira, Jr., Laser Phys. Lett. 6, 896 (2009).

    Article  Google Scholar 

  9. D. A. M. P. Malta, M. M. Costa, J. E. P. Pelino, M. F. de Andrade, and R. F. Z. Lizarelli, Laser Phys. Lett. 5, 144 (2008).

    Article  Google Scholar 

  10. L. E. H. de Andrade, R. F. Z. Lizarelli, J. P. Pelino, V. S. Bagnato, and O. B. de Oliveira, Jr., Laser Phys. Lett. 4, 457 (2007).

    Article  Google Scholar 

  11. L. E. H. de Andrade, J. E. P. Pelino, R. F. Z. Lizarelli, V. S. Bagnato, and O. B. de Oliveira, Jr., Laser Phys. Lett. 4, 157 (2007).

    Article  Google Scholar 

  12. H. G. D. Boari, P. A. Ana, CP. Eduardo, G. L. Powell, and D. M. Zezell, Laser Phys. 19, 1463 (2009).

    Article  ADS  Google Scholar 

  13. R. H. Stern, R. F. Sognnaes, and F. Goodman, J. Am. Dent. Ass. 73, 838 (1966).

    Google Scholar 

  14. S. Kantola, Acta. Odont. Scand. 30, 475 (1972).

    Article  Google Scholar 

  15. D. G. A. Nelson, M. Shariati, R. Glena, C. P. Shields, and J. D. B. Featherstone, Caries Res. 20, 289 (1986).

    Article  Google Scholar 

  16. S. Nammour, C. Renneboog-Squilbin, and C. Nyssen-Behets, Caries Res. 26, 170 (1992).

    Article  Google Scholar 

  17. J. B. D. Featherstone, N. A. Barrett-Vespone, D. Fried, Z. Kantorowitz, and W. Sek, J. Dent. Res. 77, 1397 (1998).

    Article  Google Scholar 

  18. J. F. Liu, Y. Liu, and H. C. Y. Stephen, J. Dent. 34, 62 (2006).

    Article  Google Scholar 

  19. L. K. Rodrigues, M. Nobre dos Santos, and J. D. B. Featherstone, J. Dent. Res. 85, 617 (2006).

    Article  Google Scholar 

  20. C. Steiner-Oliveira, L. K. Rodrigues, L. E. Soares, A. A. Martin, D. M. Zezell, and M. Nobre dos Santos, Dent. Mater. J. 25, 455 (2006).

    Article  Google Scholar 

  21. E. P. da Silva Tagliaferro, M. Rodrigues, L. E. Soares, A. A. Martin, and M. Nobre dos Santos, Photomed. Laser Surg. 27, 585 (2009).

    Article  Google Scholar 

  22. X. L. Gao, J. S. Pan, and C.Y Hsu, J. Dent. Res 85, 919 (2006).

    Article  Google Scholar 

  23. W. C. de Souza-Zaroni, A. C. P. Freitas, F. S. Hanashiro, C. Steiner-Oliveira, M. Nobre dos Santos, and M. N. Youssef, Laser Phys. 20, 537 (2010).

    Article  ADS  Google Scholar 

  24. J. B. D. Featherstone, S. H. Zhang, M. Shariati, and S. M. McCormack, Laser. Orthop. Dent. Vet. Med. 1424, 145 (1991).

    Google Scholar 

  25. M. Nobre dos Santos, J. D. B. Featherstone, and D. Fried, Lasers Dent. 4249, 169 (2001).

    Google Scholar 

  26. D. Fried, M. J. Zuerlein, C. Q. Le, and J. D. B. Featherstone, Lasers Surg. Med. 31, 275 (2002).

    Article  Google Scholar 

  27. L. K. Rodrigues, J. A. Cury, and M. Nobre dos Santos, J. Oral Sci. 46, 215 (2004).

    Article  Google Scholar 

  28. J. Pratten, A. W. Smith, and M. Wilson, J. Antimicrob. Chemother. 42, 453 (1998).

    Article  Google Scholar 

  29. D. H. Edmunds, D. K. Whittaker, and R. M. Green, Caries. Res. 22, 327 (1988).

    Article  Google Scholar 

  30. M. H. van der Veen, H. Tsuda, J. Arends, and J. J. ten Bosch, J. Dent. Res. 75, 588 (1996).

    Article  Google Scholar 

  31. A. S. M. Gilmour, D. H. Edmunds, and R. G. Newcombe, J. Dent. Res. 76, 1854 (1997).

    Article  Google Scholar 

  32. T. W. Cutress, C. H. Sissons, E. I. Pearce, L. Wong, K. Anderssen, and B. Angmar-Mansson, Adv. Dent. Res. 9, 14 (1995).

    Article  Google Scholar 

  33. S. K. Manesh, C. L. Darling, and D. Fried, J. Biomed. Mater. Res. B: Appl. Biomater. 90, 802 (2009).

    Google Scholar 

  34. J. D. Featherstone, D. Fried, and C. Q. Le, Lasers Dent. 4950, 236 (2003).

    Google Scholar 

  35. M. M. Hossain, M. Hossain, Y. Kimura, J. Kinoshita, Y. Yamada, and K. Matsumoto, J. Clin. Laser Med. Surg. 20, 77 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nobre-dos-Santos.

Additional information

Original Text © Astro, Ltd., 2010.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steiner-Oliveira, C., Rodrigues, L.K.A., Parisotto, T.M. et al. CO2 laser and fluoride on the inhibition of root caries—an in vitro microbial model. Laser Phys. 20, 1838–1843 (2010). https://doi.org/10.1134/S1054660X10170147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X10170147

Keywords

Navigation