Skip to main content
Log in

Spectroscopy and energy balance of the Nd2O3 selective emission upon the laser thermal excitation

  • Published:
Laser Physics

Abstract

The laser thermal melting of powders is used to fabricate selective emitters (SEs) that represent Nd2O3 and Y2O3-Nd2O3 polycrystals on quartz holders. The SEs are stable under atmospheric conditions upon multiple heating by laser radiation up to the melting point. The spectral shape and integral intensity of the selective heat radiation (SHR) of the Nd2O3 microcrystalline powder and the Nd2O3 and Y2O3-Nd2O3 polycrystals are experimentally studied in the near-IR and visible spectral ranges versus the intensity of the laser thermal excitation at a wavelength of 10.6 μm in comparison with the absorption and luminescence spectra of the YAG:Nd3+ and YAlO3:Nd3+ single crystals. The SHR spectra are determined by the vibronic transitions between the electronic states 2 G 7/2-4F3/2 4I11/2 and 4I9/2 of the Nd3+ ions that are thermally excited due to the multiphonon transitions from the ground state. The energy balance of the SE laser thermal heating is experimentally investigated. The coefficient of the laser energy conversion to the Nd3+ SHR is measured, and the emissivity of the SEs that can be used for the study of the thermophotovoltaic generators and the optical excitation of the laser-active media in the near-IR spectral range is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. E. Guazzoni, Appl. Spectrosc. 26, 60 (1972).

    Article  ADS  Google Scholar 

  2. A. Licciulli, D. Diso, G. Torsello, S. Tundo, A. Maffezzoli, L. Lomascolo, and M. Mazzer, Semicond. Sci. Technol. 18, S174 (2003).

    Article  ADS  Google Scholar 

  3. B. Bitnar, W. Durisch, J.-C. Mayor, H. Sigg, and H. R. Tschudi, Solar Energy Mater. Solar Cells 73, 221 (2002).

    Article  Google Scholar 

  4. D. L. Chubb, Fundamentals of Thermophotovoltaic Energy Conversion (Elsevier, Amsterdam, Netherlands, Boston, Oxford, UK, 2007).

    Google Scholar 

  5. B. Bitnar, W. Durisch, G. Palfinger, F. von Roth, U. Vogt, A. Brönstrup, and D. Seiler, Semiconductors 38, 980 (2004).

    Article  Google Scholar 

  6. V. L. Teofilo, P. Choong, J. Chang, Y.-L. Tseng, and S. Ermer, J. Phys. Chem. C 112, 7841 (2008).

    Article  Google Scholar 

  7. I. A. Shcherbakov, Phys. Usp. 47, 1048 (2004).

    Article  ADS  Google Scholar 

  8. G. D. Goodno, H. Komine, S. J. McNaught, S. B. Weiss, S. Redmond, W. Long, R. Simpson, E. C. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, Opt. Lett. 31, 1247 (2006).

    Article  ADS  Google Scholar 

  9. S. V. Garnov, V. A. Mikhailov, R. V. Serov, V. A. Smirnov, V. B. Tsvetkov, and I. A. Shcherbakov, Quantum Electron. 37, 910 (2007).

    Article  ADS  Google Scholar 

  10. S. N. Bagaev, V. V. Osipov, M. G. Ivanov, V. I. Solomonov, V. V. Platonov, A. N. Orlov, A. V. Rasuleva, V. V. Ivanov, A. S. Kaigorodov, V. R. Khrustov, S.M. Vatnik, I. A. Vedin, A. P. Maiorov, E. V. Pestryakov, A. V. Shestakov, and A. V. Salkov, Quantum Electron. 38, 840 (2008).

    Article  ADS  Google Scholar 

  11. H. X. Kang, H. Zhang, P. Yan, D. S. Wang, and M. Gong, Laser Phys. Lett. 5, 879 (2008).

    Article  Google Scholar 

  12. M. K. Goldstein, L. Deshazer, and A. S. Kushch, US Patent No. 6128325 (2000).

  13. D. L. Ghubb and M. O. Patton, US Patent No. 6198760 (2001).

  14. V. M. Marchenko, Quantum Electron. 36, 727 (2006).

    Article  ADS  Google Scholar 

  15. V. M. Marchenko, Laser Phys. 17, 1146 (2007).

    Article  ADS  Google Scholar 

  16. V. M. Marchenko, M. G. Voitik, and V. A. Yuryev, Laser Phys. 18, 756 (2008).

    Article  ADS  Google Scholar 

  17. J. B. Gruber, D. K. Sardar, K. L. Nash, and R. M. Yow, J. Appl. Phys. 102, 023103 (2007).

    Article  ADS  Google Scholar 

  18. M. J. Weber and T. E. Varitimos, J. Appl. Phys. 42, 4996 (1971).

    Article  ADS  Google Scholar 

  19. V. V. Golovlev, C. H. W. Chen, and W. R. Garrett, Appl. Phys. Lett. 69, 280 (1996).

    Article  ADS  Google Scholar 

  20. M. G. Krishna, R. G. Biswas, and A. K. Bhattacharya, J. Phys. D: Appl. Phys. 30, 1167 (1997).

    Article  ADS  Google Scholar 

  21. G. Torsello, M. Lomascollo, A. Licciulli, D. Diso, S. Tundo, and M. Mazzer, Nature Mater. 3, 632 (2004).

    Article  ADS  Google Scholar 

  22. M. Planck, The Theory of Heat (KomKniga, Moscow, 2006).

    Google Scholar 

  23. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).

    Google Scholar 

  24. E. L. Nichols and H. L. Howes, Phys. Rev. 19, 300 (1922).

    Article  ADS  Google Scholar 

  25. T. T. Basiev, A. Yu. Dergachev, E. O. Kirpichenkova, Yu. V. Orlovskii, and V. V. Osiko, Kvant. Elektron. 14, 2021 (1987) [Sov. J. Quantum Electron. 17, 1289 (1987)].

    Google Scholar 

  26. Ju. S. Vagin, V. M. Marchenko, and A. M. Prokhorov, JETP 55, 1717 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Marchenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchenko, V.M. Spectroscopy and energy balance of the Nd2O3 selective emission upon the laser thermal excitation. Laser Phys. 20, 1390–1396 (2010). https://doi.org/10.1134/S1054660X10120029

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X10120029

Keywords

Navigation