Skip to main content
Log in

The Effect of the Laser-Radiation Power on the Characteristics of the Raman Line for Diamond Single Crystals

  • Published:
Journal of Applied Spectroscopy Aims and scope

The paper presents the results of the study of the effect exerted by exciting laser radiation on the Raman spectra of synthetic diamond single crystals plates (linear dimensions from 3 × 3 to 5 × 5 mm) having different impurity compositions. It has been found that an increase in laser radiation power from 70 to 480 mW (90–600 kW/cm2) leads to heating of the samples by a few tens of degrees, which results in shifting of the Raman line maxima by ~0.5 cm–1 and in increased Raman line half-width up to ~0.15 cm–1. As demonstrated by the spectral data, the heating temperature correlates with the optical density and geometry of the samples and also with the conditions of heat extraction from their surface. Based on the independent measurements of the crystal temperature at a certain distance from the excitation beam axis, it is shown that the variations of the characteristics of the principal Raman line are not determined by the local heating of the crystal studied under the effect of laser radiation. An analysis of the characteristics of the Stokes and anti-Stokes spectral components makes it possible to separate the temperature and impurity effects in the variations of the principal Raman line. Using diamond monocrystalline samples as an example, it has been revealed that the increased content of nitrogen as an impurity in the lattice from 3 up to 200 ppm leads to shifting of the Raman line maximum towards lower wave numbers by 0.08 cm–1 and to its broadening by 0.23 cm–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Zaitsev, Optical Properties of Diamond: A Data Handbook, Berlin, Springer (2001).

    Book  Google Scholar 

  2. S. Prawer and R. J. Nemanich, Phil. Trans. R. Soc. Lond. A, 362, 2537–2565 (2004).

    Article  ADS  Google Scholar 

  3. T. A. Nachal’naya, V. D. Andreyev, and E. V. Gabrusenok, Diamond Relat. Mater., 3, 1325–1328 (1994).

    Article  ADS  Google Scholar 

  4. H. Guo-Feng, J. Xiao-Peng, L. Yong, H. Mei-Hua, L. Zhan-Chang, Y. Bing-Min, and M. Hong-An, Chin. Phys. B, 20, No. 7, 078103 (2011).

    Article  ADS  Google Scholar 

  5. N. V. Surovtsev, I. N. Kupriyanov, V. K. Malinovsky, V. A. Gusev, and Yu. N. Pal’yanov, J. Phys.: Condens. Matter, 11, 4767–4774 (1999).

    ADS  Google Scholar 

  6. G. A. Gusakov, M. P. Samtsov, E. S. Voropai, V. S. Solov'ev, and A. N. Demenshchenok, Zh. Prikl. Spektrosk., 68, No. 5, 612–616 (2001) [G. A. Gusakov, M. P. Samtsov, E. S. Voropai, V. S. Solov'ev, and A. N. Demenshchenok, J. Appl. Spectrosc., 68, 799–805 (2001)].

  7. H. Hanzawa, N. Umemura, Y. Nisida, H. Kanda, M. Okada, and M. Kobayashi, Phys. Rev. B, 54, 3793–3799 (1996).

    Article  ADS  Google Scholar 

  8. H. Herchen and M. A. Cappelli, Phys. Rev. B, 43, 11740–11744 (1991).

    Article  ADS  Google Scholar 

  9. Yu. N. Pal'yanov, I. Yu. Malinovsky, Yu. M. Borzdov, A. F. Khokhryakov, A. I. Chepurov, A. A. Godovikov, and N. V. Sobolev, Dokl. Akad. Nauk SSSR, 315, No. 5, 1221–1224 (1990).

    ADS  Google Scholar 

  10. S. Parker, Photoluminescence of Solutions [in Russian], Mir, Moscow (1972).

    Google Scholar 

  11. W. Trzeciakowski, J. Martґınez-Pastor, and A. Cantarero, J. Appl. Phys., 82, 3976–3982 (1997).

    Article  ADS  Google Scholar 

  12. J. B. Cui, K. Amtmann, J. Ristein, and L. Ley, J. Appl. Phys., 83, 7929–7933 (1998).

    Article  ADS  Google Scholar 

  13. R. Loudon, J. Phys., 26, 677–683 (1965).

    Article  Google Scholar 

  14. H. M. J. Smith, Phil. Trans. R. Soc. Lond. A, 241, 105–145 (1948).

    Article  ADS  Google Scholar 

  15. E. S. Zouboulis and M. Grimsditch, Phys. Rev. B, 43, 12490–12493 (1991).

    Article  ADS  Google Scholar 

  16. E. Anastassakis, H. C. Hwang, and C. H. Perry, Phys. Rev. B, 4, 2493–2497 (1971).

    Article  ADS  Google Scholar 

  17. M. S. Liu, L. A. Bursill, S. Prawer, and R. Beserman, Phys. Rev. B, 61, 3391–3395 (2000).

    Article  ADS  Google Scholar 

  18. N. V. Surovtsev and I. N. Kupriyanov, J. Raman Spectrosc., 46, 171–176 (2015).

    Article  ADS  Google Scholar 

  19. P. G. Klemens, Phys. Rev., 148, 845–848 (1966).

    Article  ADS  Google Scholar 

  20. W. J. Borer, S. S. Mitra, and K. V. Namjoshi, Solid State Commun., 9, 1377–1381 (1971).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. А. Gusakov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 4, pp. 545–553, July–August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusakov, G.А., Samtsov, М.P. & Voropay, Е.S. The Effect of the Laser-Radiation Power on the Characteristics of the Raman Line for Diamond Single Crystals. J Appl Spectrosc 84, 573–580 (2017). https://doi.org/10.1007/s10812-017-0513-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-017-0513-4

Keywords

Navigation