Skip to main content
Log in

CARS diagnostics of molecular media under nanoporous confinement

  • Nanophotonics and Nanotechnologies
  • Published:
Laser Physics

Abstract

The CARS spectroscopy is used for the diagnostics of carbon dioxide in a nanoporous glass at temperatures ranging from room temperature (20.5°C) to the subcritical temperature (30.5°C) in the pressure range below the saturated-vapor pressure. The contributions of the gas-phase molecules, the molecular layer adsorbed from the gas phase on the pore surface, the condensed liquid-like phase, and the liquid interface in the vicinity of the pore surface can be selected using the analysis of the nonlinear spectral response. The spectral behavior of the carbon dioxide confined in nanopores at the subcritical temperature indicates a state that is similar to the supercritical fluid. This corresponds to a low-temperature shift of the critical point of the medium confined in nanopores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Marlow, W. T. Dong, K. Hoffmann, and J. Loerke, “Optically and Electronically Functional Materials,” in Handbook of Porous Solids, F. Schuth, K. S. W. Sing, and J. Weitkamp (Wiley-VCH, Weinheim, 2002), Vol. 5, pp. 3029–3063.

    Chapter  Google Scholar 

  2. G. Q. Lu and X. S. Zhao, Nanoporous Materials—Science and Engineering, Series on Chemical Engineering (World Sci., Singapore, 2004), Vol. 4.

    Google Scholar 

  3. N. Zabukovec Logar and V. Kaucic, Acta Chim. Slov. 53, 117–135 (2006).

    Google Scholar 

  4. J. Han, Introduction to Nanoscale Science and Technology, Ed. by M. Di Ventra, S. Evoy, and J.R. Heflin (Springer, Heidelberg, 2004), pp. 75–598.

    Google Scholar 

  5. C. L. Hill, Activation and Functionalization of Alkanes (Wiley, New York, 1989).

    Google Scholar 

  6. G. Leofanti, G. Tozzola, M. Padovan, G. Petrini, et al., Catal. Today 34, 307 (1997).

    Article  Google Scholar 

  7. K. Sato, M. Aoki, and R. Noyori, Science 281, 1646 (1999).

    Article  ADS  Google Scholar 

  8. W. Kernel et al., Biosens. Bioelectron. 8, 473 (1993).

    Article  Google Scholar 

  9. T. Tsuru, Separation Purific. Methods 30, 191 (2001).

    Article  Google Scholar 

  10. C. C. Struemer, Nature 445, 749 (2007).

    Article  ADS  Google Scholar 

  11. A. M. Seeayad and D. M. Antonelli, Adv. Mater. 16, 765 (2004).

    Article  Google Scholar 

  12. G. V. R. Rao and G. P. Lopez, Adv. Mater. 12, 1692 (2000).

    Article  Google Scholar 

  13. S. G. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity (Academic, New York, 1982).

    Google Scholar 

  14. L. Sarkisov and P. A. Monson, Lengmur 17, 7600 (2004).

    Article  Google Scholar 

  15. M. Thommes and G. H. Findenegg, Langmuir 10, 4270 (1994); P. I. Ravikovitch and A. V. Neimark, Langmuir 18, 9830 (2002); K. Morishige and Yu. Nakamura, Langmuir 20, 4503 (2004).

    Article  Google Scholar 

  16. F. Restagno, L. Bocquet, J. Crassous, and E. Charlaix, Colloids Surf., A 206, 69 (2002).

    Article  Google Scholar 

  17. M. A. Anisimov, Critical Phenomena in Liquids and Liquid Crystals (Gordon and Breach, Philadelphia, 1991).

    Google Scholar 

  18. A. de Keizer, T. Michalski, and Findenegg, Pure Appl. Chem. 63, 1495 (1991).

    Article  Google Scholar 

  19. M. E. Fisher and H. Nakanishi, J. Chem. Phys. 75, 5857 (1981).

    Article  ADS  Google Scholar 

  20. H. Nakanishi and M. E. Fisher, J. Chem. Phys. 78, 3279 (1983).

    Article  ADS  Google Scholar 

  21. H. Omi, B. Nagasaka, K. Miyakubo, et al., Phys. Chem. Chem. Phys. 6, 1299 (2004).

    Article  Google Scholar 

  22. V. B. Kazaansky, V. Yu. Borovkov, A. I. Serykh, and M. Bulow, Phys. Chem. Chem. Phys. 1, 3701 (1999).

    Article  Google Scholar 

  23. P. J. Brenton, P. G. Hall, M. Treguer, and K. S. W. Sing, J. Chem. Soc., Faraday Trans. 91, 2041 (1995).

    Article  Google Scholar 

  24. T. A. Steriotis, K. K. Stefanopoulos, A. C. Mitropoulos, et al., Appl. Phys. A 74(Suppl.), S1333 (2002).

    Article  ADS  Google Scholar 

  25. O. Di Giovanni, W. Dorfler, M. Mazzotti, and M. Morbidelli, Langmuir 17, 4316 (2001).

    Article  Google Scholar 

  26. J. H. Chen, D. S. H. Wong, and Ch. S. Tan, Ind. Eng. Chem. Res. 36, 2808 (1997).

    Article  Google Scholar 

  27. C. P. Poole, Jr. and F. J. Owens, Introduction to Nanotechnology (Wiley, New York, 2003).

    Google Scholar 

  28. J. W. Haus, K. Sakoda, and A. M. Zheltikov, Laser Phys. (Nonlin. Opt. Photonic Cryst., Spec. Issue), 14 (2004).

  29. A. M. Zheltikov, Las. Phys. Lett. 1, 468 (2004).

    Article  Google Scholar 

  30. R.-S. Luo and J. Jonas, J. Raman Spectrosc. 32, 975 (2001).

    Article  Google Scholar 

  31. V. G. Arakcheev, V. N. Bagratashvili, S. A. Dubyanskiy, et al., J. Raman Spectrosc. 39, 750 (2008).

    Article  Google Scholar 

  32. C. Czeslik. Y. J. Kim, and J. Jonas, J. Chem. Phys. 111, 9739 (1999); J. Yi and J. Jonas, J. Chem. Phys. 100, 16789 (1996); R.-S. Luo and J. Jonas, J. Raman Spectrosc. 32, 975 (2001).

    Article  ADS  Google Scholar 

  33. V. Crupi, F. Longo, D. Majolino, and V. Venuti, Eur. Phys. J. Spec. Top. 141, 61 (2007).

    Article  Google Scholar 

  34. M. I. Cabaco, S. Longelin, Y. Danten, and M. Besnard, J. Phys. Chem. A 111, 12966 (2007).

    Article  Google Scholar 

  35. V. G. Arakcheev, V. N. Bagratashvili, A. A. Valeev, et al., J. Raman Spectrosc. 34, 952 (2003).

    Article  Google Scholar 

  36. S. A. Akhmanov and N. I. Koroteev, Methods of Nonlinear Optics in Light Scattering Spectroscopy (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  37. G. L. Eesley, Coherent Raman Spectroscopy (Pergamon, London, 1981).

    Google Scholar 

  38. A. M. Zheltikov, J. Opt. Soc. Am. B 22, 605 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  39. A. M. Zheltikov, Opt. Commun. 244, 461 (2005).

    Article  ADS  Google Scholar 

  40. S. O. Konorov, V. P. Mitrokhin, I. V. Smirnova, et al., “Gas-and Condensed-Phase Sensing by Coherent Anti-Stokes Raman Scattering in a Mesoporous Silica Aerogel Host,” Chem. Phys. Lett. 394, 1 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Morozov.

Additional information

Original Text © Astro, Ltd., 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arakcheev, V.G., Valeev, A.A., Morozov, V.B. et al. CARS diagnostics of molecular media under nanoporous confinement. Laser Phys. 18, 1451–1458 (2008). https://doi.org/10.1134/S1054660X08120128

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X08120128

PACS numbers

Navigation