Skip to main content
Log in

Hot electrons produced from long scale-length laser-produced droplet plasmas

  • Strong Field Phenomena
  • Published:
Laser Physics

Abstract

Microplasmas produced from 15 μm methanol droplets irradiated by 100 fs laser pulses in the intensity range 1014–1016 W cm−2 are investigated via measurements of the hot electron temperature and x-ray yields under different conditions of intensity, polarization state, and plasma scale-length. The scale length of the drop-let plasma is increased with an intentional prepulse that is 10 ns ahead of the main pulse. Hot electron temperatures up to 48 keV have been measured at intensities of 2.5 × 1015W cm−2 and the scaling of temperature as a function of intensity is determined for a long scale-length droplet plasma. The polarization and ellipticity dependence of the hard x-ray yield from the microdroplet plasmas are used to probe the shape of the droplet after irradiation by a prepulse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Strickland and G. Mourou, Opt. Comm. 56, 219 (1985).

    Article  ADS  Google Scholar 

  2. J. Fuchs et al., Nature Phys. (London) 2, 48 (2006).

    Article  ADS  Google Scholar 

  3. J. Faure et al., Nature (London) 431, 541 (1997).

    Article  ADS  Google Scholar 

  4. M. M. Murnane et al., Phys. Fluids B 3, 2409 (1991).

    Article  ADS  Google Scholar 

  5. L. Malmqvist et al., Appl. Phys. Lett. 68, 2627 (1996).

    Article  ADS  Google Scholar 

  6. L. Rymell et al., Appl. Phys. Lett. 66, 2625 (1995).

    Article  ADS  Google Scholar 

  7. K. W. D. Ledingham et al., Science 300, 1107 (2003).

    Article  ADS  Google Scholar 

  8. M. I. K. Santala et al., Appl. Phys. Lett. 78, 19 (2001).

    Article  ADS  Google Scholar 

  9. A. McPherson et al., Phys. Rev. Lett. 72, 1810 (1994).

    Article  ADS  Google Scholar 

  10. P. P. Rajeev et al., Phys. Rev. Lett. 90, 115002 (2003).

  11. L. Rymell et al., Opt. Comm. 103, 105 (1993).

    Article  ADS  Google Scholar 

  12. C. Rischel et al., Nature (London) 390, 490 (1997).

    Article  ADS  Google Scholar 

  13. R. Kodama et al., Nature (London) 412, 798 (2001).

    Article  ADS  Google Scholar 

  14. P. P. Rajeev et al., Phys. Rev. A 65, 052903 (2002).

  15. D. W. Forslund et al., Phys. Rev. Lett. 39, 284 (1977).

    Article  ADS  Google Scholar 

  16. F. Brunei, Phys. Rev. Lett. 59, 52 (1987).

    Article  ADS  Google Scholar 

  17. P. Gibbon and A. R. Bell, Phys. Rev. Lett. 68, 1535 (1992).

    Article  ADS  Google Scholar 

  18. R. E. Turner et al., Phys. Rev. Lett. 57, 1725 (1986).

    Article  ADS  Google Scholar 

  19. F. N. Beg et al., Phys. Plasmas 4, 447 (1997).

    Article  ADS  Google Scholar 

  20. A. Sjogren, M. Harbst, C. G. Wahlstrom, and S. Svanberg, Rev. Sci. Instrum. 74, 2300 (2003).

    Article  ADS  Google Scholar 

  21. W. Priedhorsky et al., Phys. Rev. Lett. 47, 1661 (1981).

    Article  ADS  Google Scholar 

  22. D. Giulietti et al., Riv. Nuovo Cimento 21, 1 (1998).

    Google Scholar 

  23. U. Teubuer et al., Phys. Rev. Lett. 70 794 (1993).

    Article  ADS  Google Scholar 

  24. J. Gauthier et al., Proc. SPIE 3157, 52 (1997).

    Article  ADS  Google Scholar 

  25. S. Bastiani et al., Phys. Rev. E 56, 7179 (1997).

    Article  ADS  Google Scholar 

  26. T. D. Donnelly et al., J. Phys. B 34, L313 (2001).

    Article  ADS  Google Scholar 

  27. N. Zhavoronkov et al., App. Phys. B 79, 663 (2004).

    Article  ADS  Google Scholar 

  28. A. Thoss et al., J. Opt. Soc. Am. B 20, 224 (2003).

    ADS  Google Scholar 

  29. R. J. Tompkins et al., Rev. Sci. Instrum. 69, 3113 (1998).

    Article  ADS  Google Scholar 

  30. M. Anand, A. S. Sandhu, S. Kahaly, et al., Appl. Phys. Lett. 88, 181111 (2006).

  31. V. Kumarappan et al., Phys. Rev. Lett. 87, 85005 (2001).

  32. M. Anand et al., Chem. Phys. Lett. 372, 263 (2003).

    Article  Google Scholar 

  33. M. Anand et al., App. Phys. B 81, 469 (2005).

    Article  ADS  Google Scholar 

  34. C. Favre, V. Boutou, S. C. Hill, et al., Phys. Rev. Lett. 89, 35002 (2002).

  35. P. Gibbon et al., Phys. Plasmas 6, 947 (1999).

    Article  ADS  Google Scholar 

  36. S. Banerjee, G. R. Kumar, and L. C. Tribedi, Eur. Phys. J. D 11, 295 (2000).

    Article  ADS  Google Scholar 

  37. V. Kumarappan, M. Krishnamurthy, D. Mathur, and L. C. Tribedi, Phys. Rev. A 63, 023203 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anand, M., Gibbon, P. & Krishnamurthy, M. Hot electrons produced from long scale-length laser-produced droplet plasmas. Laser Phys. 17, 408–414 (2007). https://doi.org/10.1134/S1054660X07040160

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X07040160

PACS numbers

Navigation