Skip to main content
Log in

Simulation of electron bunch generation by an ultrashort-pulse high-intensity laser-driven wakefield

  • Strong Field Phenomena
  • Published:
Laser Physics

Abstract

Electron acceleration due to a wakefield excited by a ultrashort-pulse intense laser propagating through a finite-length underdense plasma layer is studied by two-dimensional particle-in-cell simulation. The electron energy distribution is analyzed for moderate to high intensity. For the electron density, where the pulse length is almost half of the plasma wavelength, dramatic changes of the density structure occur with cavity and bunch formation with an increase in the laser intensity, also leading to the appearance of a fast electron component well confined in phase space. The analytical form of the fast electron energy spectrum is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979).

    Article  ADS  Google Scholar 

  2. T. Tajima, Laser Part. Beams 3, 351 (1985).

    ADS  Google Scholar 

  3. L. M. Gorbunov and V. I. Kirsanov, JETP 93, 509 (1987); E. Esarey, P. Sprangle, J. Krall, and A. Ting IEEE Trans. Plasma Sci. PS-24, 252 (1996).

    Google Scholar 

  4. F. Dorchies, F. Amiranoff, V. Malka, et al., Phys. Plasmas 6, 2903 (1999).

    Article  ADS  Google Scholar 

  5. S. V. Bulanov, V. I. Kirsanov, and A. S. Sakharov, JETP Lett. 53, 565 (1991); S. V. Bulanov, I. N. Inovenkov, I. N. Kirsanov, et al., Phys. Fluids B 4, 1935 (1992); C. D. Decker, W. B. Mori, and T. Katsouleas, Phys. Rev. E 50, R3338 (1994); K.-C. Tzeng, W. B. Mori, and T. Katsouleas, Phys. Plasmas 5, 2105 (1999).

    ADS  Google Scholar 

  6. A. Modena, Z. Najmudin, A. E. Danger, et al., Nature 377, 606 (1995).

    Article  ADS  Google Scholar 

  7. C. A. Coverdale, C. B. Darrow, C. D. Decker, et al., Phys. Rev. Lett. 74, 4659 (1995); D. Gordon, K. C. Tzeng, C. E. Clayton, et al., Phys. Rev. Lett. 80, 2133 (1998); R. M. G. M. Trines, V. V. Goloviznin, L. P. J. Kamp, and T. J. Schep, Phys. Rev. E 63, 026 406 (2001).

    Article  ADS  Google Scholar 

  8. V. Malka, S. Fritzler, E. Lefebvre, et al., Science 298, 1596 (2002).

    Article  ADS  Google Scholar 

  9. T. Hosokai, K. Kinoshita, A. Zhidkov, et al., Phys. Rev. E 67, 036 407 (2003).

  10. A. Zhidkov, J. Koga, K. Kinoshita, and M. Uesaka, Phys. Rev. E 69, 035 401(R) (2004).

  11. D. Umstadter, J. Kim, and E. Dodd, Phys. Rev. Lett. 76, 2073 (1996); E. Esarey, R. Habbard, W. Leemans, et al., Phys. Rev. Lett. 79, 2682 (1997), R. G. Hemker, K.-C. Tzeng, W. B. Mori, et al., Phys. Rev. E 57, 5920 (1998), K. Nagashima, J. Koga, and M. Kando, Phys. Rev. E 64, 066403 (2001); H. Kotaki, S. Masuda, M. Kando, et al., Phys. Plasmas 11, 3296 (2004); E. S. Dodd, J. K. Kim, and D. Umstadter, Phys. Rev. E 70, 056 410 (2004).

    Article  ADS  Google Scholar 

  12. S. V. Bulanov, N. M. Naumova, F. Pegoraro, and J. Sakai, Phys. Rev. E 58, R5257 (1998); H. Suk, N. Barov, J. B. Rosenzweig, and E. Esarey, Phys. Rev. Lett. 86, 1011 (2001); P. Tomassini, M. Galimberti, A. Giulietti, et al., Phys. Rev. ST Accel. Beams 6, 121 301 (2003); M. C. Thompsom, J. B. Rosenzweig, and H. Suk, Phys. Rev. ST Accel. Beams 7, 011 301 (2004); M. C. Thompsom, J. B. Rosenzweig, and G. Travich, Rev. Sci. Instrum. 76, 013 303 (2005).

    Article  ADS  Google Scholar 

  13. K. Nakajima, D. Fisher, T. Kawakubo, et al., Phys. Rev. Lett. 74, 4428 (1995).

    Article  ADS  Google Scholar 

  14. D. Umstadter, J. Phys. D. Appl. Phys. 36, R151 (2003).

    Article  ADS  Google Scholar 

  15. S. P. D. Mangles, C. D. Murphy, Z. Najmudin, et al., Nature 431, 535 (2004).

    Article  ADS  Google Scholar 

  16. C. G. R. Geddes, Cs. Toth, J. Van Tilborg, et al., Nature 431, 538 (2004).

    Article  ADS  Google Scholar 

  17. J. Faure, Y. Glinec, A. Pukhov, et al., Nature 431, 541 (2004).

    Article  ADS  Google Scholar 

  18. K. Koyama, E. Miura, S. Kato, et al., J. Pract. Accel. Soc. Jpn. 1, 158 (2004).

    Google Scholar 

  19. T. Katsouleas, Nature 431, 515 (2004).

    Article  ADS  Google Scholar 

  20. S. V. Bulanov and T. Tajima, J. Pract. Accel. Soc. Jpn. 2, 111 (2005).

    Google Scholar 

  21. G. A. Askaryan, S. V. Bulanov, G. I. Dudnikova, et al., Plasma Phys. Controlled Fusion 39, 137 (1997).

    Article  ADS  Google Scholar 

  22. F. Pegoraro, S. V. Bulanov, F. Califano, et al., Plasma Phys. Controlled Fusion B 39, 261 (1997).

    ADS  Google Scholar 

  23. K.-C. Tzeng, W. B. Mori, and T. Katsouleas, Phys. Rev. Lett. 79, 5258 (1997); K. Nagashima, Y. Kishimoto, and H. Takuma, Phys. Rev. E 59, 1263 (1999); S. V. Bulanov, F. Califano, G. I. Dudnikova, et al., Plasma Phys. Rep. 25, 468 (1999).

    Article  ADS  Google Scholar 

  24. T. V. Liseikina, F. Califano, V. A. Vshivkov, et al., Phys. Rev. E 60, 5991 (1999).

    Article  ADS  Google Scholar 

  25. A. Pukhov and J. Meyer-Ter-Vehn, Appl. Phys. B 74, 355 (2002).

    Article  ADS  Google Scholar 

  26. A. G. Zhidkov, J. Koga, T. Hosokai, et al., Phys. Plasmas 11, 5379 (2004); J. U. Kim, N. Hafz, and H. Suk, Phys. Rev. E 69, 026 409 (2004); H. Xu, W. Yu, P. Lu, et al., Phys. Plasmas 12, 013 105 (2005).

    Article  ADS  Google Scholar 

  27. M. Yamagiwa, J. Koga, L. N. Tsintsadze, et al., Phys. Rev. E 60, 5987 (1999).

    Article  ADS  Google Scholar 

  28. J. Koga, K. Nakajima, and K. Nakagawa, Super Strong Fields, in Plasmas, AIP Conf. Proc. 611, 126 (2002).

  29. S. V. Bulanov, F. Pegoraro, and A. M. Pukhov, Phys. Rev. Lett. 74, 710 (1995).

    Article  ADS  Google Scholar 

  30. N. E. Andreev, S. V. Kuznetsov, and I. V. Pogorelsky, Phys. Rev. ST Accel. Beams 3, 021 301 (2000).

    Google Scholar 

  31. F. S. Tsung, R. Narang, W. B. Mori, et al., Phys. Rev. Lett. 93, 185002 (2004).

  32. L. M. Gorbunov, S. Yu. Kalmykov, and P. Mora, Phys. Plasmas 12, 033101 (2005).

    Google Scholar 

  33. S. V. Bulanov, M. Yamagiwa, T. Zh. Esirkepov, et al., Phys. Plasmas 12, 073 103 (2005).

  34. Y. Ueshima, Y. Sentoku, and Y. Kishimoto, Nucl. Instrum. Methods Phys. Res. 455, 181 (2000).

    ADS  Google Scholar 

  35. M. Kando, S. Masuda, A. Zhidkov, et al., Phys. Rev. E 71, 015 403(R) (2005).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2006.

Former Japan Atomic Energy Research Institute (JAERI).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamagiwa, M., Bulanov, S.V., Esirkepov, T.Z. et al. Simulation of electron bunch generation by an ultrashort-pulse high-intensity laser-driven wakefield. Laser Phys. 16, 252–258 (2006). https://doi.org/10.1134/S1054660X06020083

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X06020083

Keywords

Navigation