Skip to main content
Log in

Creep Resistance and Structure of 10% Cr–3% Сo–2% W–0.29% Cu–0.17% Re Steel with Low Nitrogen and High Boron Contents for Unit Components of Coal Power Plants

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

The creep resistance and structure of 10% Cr–3% Сo–2% W–0.29% Cu–0.17% Re steel with 0.1% carbon, low nitrogen content and high boron content were investigated by creep rupture testing at a temperature of 650°C and stresses from 200 to 100 MPa applied in 20-MPa increments. For comparison, 9% Cr steel with 0.1% carbon, 0.05% nitrogen, and 0.005% boron was considered. The steels were subjected to preliminary heat treatment including normalizing at 1050°C for 1 hour, tempering at 750–770°C for 3 hours, and cooling in air. The structures of both heat-treated steels exhibited martensite laths with boundaries pinned by М23С6 carbides, and the rearrangement of dislocations was retarded by MX particles. A significant difference between 10% Cr and 9% Cr steels was the presence of fine М23С6 carbide particles characterized by orientational relationships with the ferrite matrix and MX carbonitrides, whose volume fraction was 6 times lower. Short-term tensile tests at room temperature showed no differences between the steels, while the creep rupture strength of 10% Cr steel was 13% higher than for 9% Cr steel. The creep deformation mechanism of the steels was also different. Structural analysis of 10% Cr steel after creep tests revealed no substantial changes in its lath structure: the lath width increased by only 58% and the dislocation density was reduced by a factor of 2. Comparison with 9% Cr steel showed that the good structural stability of 10% Cr steel during creep is caused by the high coarsening resistance of second phase particles, whose coarsening rate is 1-2 orders of magnitude lower than that in 9% Cr steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Abe, F., Kern, T.-U., and Viswanathan, R., Creep-Resistant Steels, Cambridge: Woodhead Publishing, 2008.

  2. Kern, T.U., Staubli, M., and Scarlin, B., The European Efforts in Material Development for 6508C USC Power Plants—COST522, ISIJ Int., 2002, vol. 242, pp. 1515–1519.

    Article  Google Scholar 

  3. Klueh, R.L., Elevated-Temperature Ferritic and Martensitic Steels and Their Application to Future Nuclear Reactors, Int. Mater. Rev., 2005, vol. 50, pp. 287–310. https://doi.org/10.1179/174328005X41140

    Article  CAS  Google Scholar 

  4. Bladesha, H.K.D.H., Design of ferritic creep-resistant steels, ISIJ Int., 2001, vol. 41, pp. 626–640. https://doi.org/10.2355/isijinternational.41.626

    Article  Google Scholar 

  5. Kaybyshev, R.O., Skorobogatykh, V.N., and Shchenkova, I.A., New Martensitic Steels for Fossil Power Plant: Creep Resistance, Phys. Met. Metallogr., 2010, vol. 109, pp. 186–200. https://doi.org/10.1134/S0031918X10020110

    Article  ADS  Google Scholar 

  6. Fedoseeva, A., Nikitin, I., Tkachev, E., Mishnev, R., Dudova, N., and Kaibyshev, R., Effect of Alloying on the Nucleation and Growth of Laves Phase in the 9–10% Cr–3% Co Martensitic Steels during Creep, Metals, 2021, vol. 11, p. 60. https://doi.org/10.3390/met11010060

    Article  CAS  Google Scholar 

  7. Maruyama, K., Sawada, K., and Koike, J., Strengthening Mechanisms of Creep Resistant Tempered Martensitic Steel, ISIJ Int., 2001,vol. 41, pp. 641–653. https://doi.org/10.2355/isijinternational.41.641

  8. Fedoseeva, A., Dudova, N., and Kaibyshev, R., Creep Strength Breakdown and Microstructure Evolution in a 3% Co Modified P92 Steel, Mater. Sci. Eng. A, 2016, vol. 654, pp. 1–12. https://doi.org/10.1016/j.msea.2015.12.027

    Article  CAS  Google Scholar 

  9. Dronhofer, A., Pešička, J., Dlouhy, A., and Eggeler, G., On the Nature of Internal Interfaces in Tempered Martensite Ferritic Steels, Mater. Res. Adv. Tech., 2003, vol. 94, pp. 511–520. https://doi.org/10.1515/ijmr-2003-0091

    Article  CAS  Google Scholar 

  10. Kostka, A., Tak, K.-G., Hellmig, R.J., Estrin, Y., and Eggeler, G., On the Contribution of Carbides and Micrograin Boundaries to the Creep Strength of Tempered Martensite Ferritic Steels, Acta Mater., 2007, vol. 55, pp. 539–550. https://doi.org/10.1016/j.actamat.2006.08.046

    Article  CAS  ADS  Google Scholar 

  11. Abe, F., Effect of Fine Precipitation and Subsequent Coarsening of Fe2W Laves Phase on the Creep Deformation Behavior of Tempered Martensitic 9Cr-W Steels, Metall. Trans. A, 2005, vol. 36, pp. 321–332. https://doi.org/10.1007/s11661-005-0305-y

    Article  Google Scholar 

  12. Prat, O., Garcia, J., Rojas, D., Sauthoff, G., and Inden, G., The Role of Laves Phase on Microstructure Evolution and Creep Strength of Novel 9% Cr Heat Resistant Steels, Intermetallics, 2013, vol. 32, pp. 362–372. https://doi.org/10.1016/j.intermet.2012.08.016

    Article  CAS  Google Scholar 

  13. Fedoseeva, A., Tkachev, E., and Kaibyshev, R., Advanced Heat-Resistant Martensitic Steels: Long-Term Creep Deformation and Fracture Mechanisms, Mater. Sci. Eng. A, 2023, vol. 862, p. 144438. https://doi.org/10.1016/j.msea.2022.144438

    Article  CAS  Google Scholar 

  14. Abe, F., Taneike, M., and Sawada, K., Alloy Design of Creep Resistant 9Cr Steel Using a Dispersion of Nano-Sized Carbonitrides, Int. J. Press. Vessel. Pip., 2007, vol. 84, pp. 3–12. https://doi.org/10.1016/j.ijpvp.2006.09.003

    Article  CAS  Google Scholar 

  15. Horiuchi, T., Igarashi, M., and Abe, F., Improved Utilization of Added B in 9Cr Heat-Resistant Steels Containing W, ISIJ Int., 2002, vol. 42, pp. 67–71. https://doi.org/10.2355/isijinternational.42.Suppl_S67

    Article  Google Scholar 

  16. Abe, F., Effect of Boron on Microstructure and Creep Strength of Advanced Ferritic Power Plant Steels, Proc. Eng., 2011, vol. 10, pp. 94–99. https://doi.org/10.1016/j.proeng.2011.04.018

    Article  CAS  Google Scholar 

  17. Viswanathan, R. and Bakker, W., Materials for Ultrasupercritical Coal Power Plants—Turbine Materials: Part 2, J. Mater. Eng. Perform., 2001, vol. 10, pp. 96–101. https://doi.org/10.1361/105994901770345394

    Article  CAS  Google Scholar 

  18. Fukuda, M., Tsuda, Y., Yamashita, K., Shinozaki, Y., and Takanashi, T., Materials and Design for Advanced High Temperature Steam Turbines, in Conf. Proc. Advances in Materials Technology for Fossil Power Plants, 25–28 Oct. 2004, Hilton Head Island, South Carolina, Viswanathan, R., Gandy, D., and Coleman, K., Eds., Materials Park: ASM Int., 2005, pp. 491–505.

  19. Fedoseeva, A., Nikitin, I., Dudova, N., and Kaibyshev, R., On Effect of Rhenium on Mechanical Properties of a High-Cr Creep Resistant Steel, Mater. Lett., 2019, vol. 269, pp. 81–84. https://doi.org/10.1016/j.matlet.2018.10.081

    Article  CAS  Google Scholar 

  20. Fedoseeva, A., Nikitin, I., Dudova, N., and Kaibyshev, R., Superior Creep Resistance of a High-Cr Steel with Re Additives, Mater. Lett., 2020, vol. 262, p. 127183. https://doi.org/10.1016/j.matlet.2019.127183

    Article  CAS  Google Scholar 

  21. Fedoseeva, A., Nikitin, I., Dudova, N., and Kaibyshev, R., Strain and Temperature Contributions to Structural Evolution in a Re-Containing 10% Cr–3% Co–3% W Steel during Creep, Mater. High Temp., 2021, vol. 38, pp. 237–246. https://doi.org/10.1080/09603409.2021.1924548

    Article  CAS  Google Scholar 

  22. Fedoseeva, A., Nikitin, I., Dudova, N., and Kaibyshev, R., Nucleation of W-Rich Carbides and Laves Phase in a Re-Containing 10% Cr Steel during Creep at 650°C, Mater. Char., 2020, vol. 169, p. 110651. https://doi.org/10.1016/j.matchar.2020.110651

    Article  CAS  Google Scholar 

  23. Humphreys, F.J. and Hatherly, M., Recrystallization and Related Annealing Phenomena, New York: Elsevier, 2004.

  24. Fedoseeva, A., Dolzhenko, A., and Kaibyshev, R., Thermo-Mechanical Processing as Method Decreasing Delta-Ferrite and Improving the Impact Toughness of the Novel 12% Сr Steels with Low N and High B Contents, Materials, 2022, vol. 15, p. 8861. https://doi.org/10.3390/ma15248861

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Kipelova, A., Odnobokova, M., Belyakov, A., and Kaibyshev, R., Effect of Co on Creep Behavior of a P911 Steel, Metall. Mater. Trans A, 2013, vol. 44, pp. 577–583. https://doi.org/10.1007/s11661-012-1390-3

    Article  CAS  Google Scholar 

  26. Fedoseeva, A., Dudko, V., Dudova, N., and Kaibyshev, R., Effect of Co on the Strengthening Mechanisms of the Creep-Resistant 9% Cr–2% W–MoVNb Steel, J. Mater. Sci., 2022, vol. 57, pp. 21491–21501. https://doi.org/10.1007/s10853-022-07940-z

    Article  CAS  ADS  Google Scholar 

  27. Nikitin, I., Fedoseeva, A., and Kaibyshev, R., Strengthening Mechanisms of Creep-Resistant 12% Cr–3% Co Steel with Low N and High B Contents, J. Mater. Sci., 2020, vol. 55, pp. 7530–7545. https://doi.org/10.1007/s10853-020-04508-7

    Article  CAS  ADS  Google Scholar 

  28. Spigarelli, S., Cerri, E., Bianchi, P., and Evangelista, E., Interpretation of Creep Behavior of a 9Cr–Mo–Nb–V–N (T91) Steel Using Threshold Stress Concept, Mater. Sci. Technol., 1999, vol. 15, pp. 1433–1440. https://doi.org/10.1179/026708399101505428

    Article  CAS  ADS  Google Scholar 

  29. Vallourec & Mannesmann Tubes, in T92/P92 Steel Handbook (Ultra-) Supercritical Boiler Steel and Welding Technical Symposium, 2005, vol. 3, pp. 285–304.

  30. Wagner, C., Theorie der Alterung von Niederschlaegen durch Umlosen (Ostwald Reifung), Phys. Chem. Chem. Phys., 2010, vol. 65, pp. 581–591. https://doi.org/10.1002/BBPC.19610650704

    Article  Google Scholar 

  31. Lifshitz, M. and Slyozov, V.V., The Kinetics of Precipitation from Supersaturated Solid Solutions, J. Phys. Chem. Solids, 1961, vol. 19, pp. 35–50. https://doi.org/10.1016/0022-3697(61)90054-3

    Article  ADS  Google Scholar 

  32. Dudova, N., Mishnev, R., and Kaibyshev, R., Creep Behavior of a 10% Cr Heat-Resistant Martensitic Steel with Low Nitrogen and High Boron Contents at 650°C, Mater. Sci. Eng. A, 2019, vol. 766, p. 138353. https://doi.org/10.1016/j.msea.2019.138353

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author expresses gratitude to the Joint Research Center “Technologies and Materials”, Belgorod State University, for the equipment provided.

Funding

The work was carried out with financial support from the Russian Science Foundation (Agreement No. 19-73-10089-P), https://rscf.ru/project/22-73-41001/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Fedoseeva.

Ethics declarations

The author of this work declares that she has no conflicts of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedoseeva, A. Creep Resistance and Structure of 10% Cr–3% Сo–2% W–0.29% Cu–0.17% Re Steel with Low Nitrogen and High Boron Contents for Unit Components of Coal Power Plants. Phys Mesomech 27, 88–101 (2024). https://doi.org/10.1134/S1029959924010090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959924010090

Keywords:

Navigation