Skip to main content
Log in

A New Method for Adhesion Strength Assessment of Indented Polymer Coatings

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The paper proposes a new method for adhesion strength assessment of polymer coatings which is based on Rockwell indentation with experimental data processing via finite element simulation in terms of fracture mechanics (cohesive zone model, CZM). With the example of a titanium-alkoxide epoxy composition deposited on low-carbon steel, it is shown that when the Rockwell indenter penetrates perpendicular to the coating surface, circular buckling delamination around its indent occurs due to adhesive bond rupture by radial shear with extrusion of the coating material from beneath the indenter. The parameter controlled in the simulation is the width of coating delamination zones formed in indentation experiments at a constant indentation depth. The conditions of adhesive contact are specified using the CZM bilinear law, which describes the relation between the tangential adhesive stress and the adhesive bond elongation under shear in the contact plane of interacting surfaces. The criterion of quantitative adhesion strength assessment is the ultimate specific surface energy of adhesive failure. The simulation gives an optimum value of the ultimate specific surface energy of adhesive failure of the coating at CZM parameters that provide the best convergence of the numerical and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. The equipment was provided by the Plastometria Collective Center of IES UrB RAS.

REFERENCES

  1. Gdoutos, E.E., Fracture Mechanics, Solid Mechanics and Its Applications, Switzerland, AG: Springer Nature, 2020.

  2. Lunev, V.L. and Nemashkalo, O.V., Adhesion Characteristics of Coatings and Methods of Their Measurements, Fiz. Inzh. Poverkhn., 2010, vol. 8, no. 1, pp. 64–71.

    Google Scholar 

  3. Schwarzer, N. and Richte, F., Adhesion and Elastic Contact Stresses of Coating/Substrate Systems under Normal and Tangential Loads, Surf. Coat. Technol., 1995, vol. 74–75, no. 1, pp. 97–103.

    Article  Google Scholar 

  4. Smirnov, S.V., Myasnikova, M.V., and Igumnov, A.S., Determination of the Local Shear Strength of a Layered Metal Composite Material with a Ductile Interlayer after Thermocycling, Diagnost. Resource Mech. Mater. Struct., 2016, vol. 4, pp. 46–56.

    Google Scholar 

  5. Kleinbichler, A., Pfeifenberger, M.J., Zechner, J., Moody, N.R., Bahr, D.F., and Cordill, M.J., New Insights into Nanoindentation-Based Adhesion Testing, J. Mineral. Met. Mater. Soc. (TMS), 2017, vol. 69, no. 11, pp. 2237–2245.

    Article  Google Scholar 

  6. Volinsky, A.A., Moody, N.R., and Gerberich, W.W., Interfacial Toughness Measurements for Thin Films on Substrates, Acta Mater., 2002, vol. 50, pp. 441–466.

    Article  ADS  Google Scholar 

  7. Golovin, Yu.I., Nanoindentation and Mechanical Properties of Solids in Submicrovolumes, Thin Near-Surface Layers, and Films: A Review, Phys. Solid State, 2008, vol. 50, pp. 2205–2236. https://doi.org/10.1134/S1063783408120019

    Article  ADS  Google Scholar 

  8. Michael, M., Holger, V., and Stefan, H., Predictive Modeling of Damage and Failure in Adhesively Bonded Metallic Joints Using Cohesive Interface Elements, Int. J. Adhes. Adhes., 2014, vol. 49, pp. 7–17.

    Article  Google Scholar 

  9. Khan, M.A., Silberschmidt, V.V., and El-Rimawi, J., Controlled Failure Warning and Mitigation of Prematurely Failing Beam through Adhesive, Compos. Struct., 2017, vol. 161, pp. 119–131.

    Article  Google Scholar 

  10. Piculin, S., Nicklisch, F., and Brank, B., Numerical and Experimental Tests on Adhesive Bond Behaviour in Timber-Glass Walls, Int. J. Adhes. Adhes., 2016, vol. 70, pp. 204–217.

    Article  Google Scholar 

  11. Goldstein, R.W. and Perelmuter, M.N., Modeling of Crack Resistance of Composite Materials, Vych. Mekh. Sploshn. Sred, 2009, vol. 2, pp. 22–39.

    Google Scholar 

  12. Panigrahi, S.K. and Pradhan, B., Onset and Growth of Adhesion Failure and Delamination Induced Damages in Double Lap Joint of Laminated FRP Composites, Compos. Struct., 2008, vol. 85, pp. 326–336.

    Article  Google Scholar 

  13. Chernyakin, S.A. and Skvortsov, Yu.V., Analysis of Delamination Propagation in Composite Structures, Vestnik SibGAU, 2014, vol. 56, no. 4, pp. 249–255.

    Google Scholar 

  14. Wang, X., Wang, C., and Atkinson, A., Interface Fracture Toughness in Thermal Barrier Coatings by Cross-Sectional Indentation, Acta Mater., 2012, vol. 60, pp. 6152–6163.

    Article  ADS  Google Scholar 

  15. Chen, J. and Bull, S., Approaches to Investigate Delamination and Interfacial Toughness in Coated Systems: An Overview, IOP J. Phys. D. Appl. Phys., 2011, vol. 44, no. 3, p. 34001. http://dx.doi.org/10.1088/0022-3727/44/3/034001

    Article  Google Scholar 

  16. Pestov, A.V., Kuznetsov, V.A., Mekhaev, A.V., Gorbunova, T.I., Saloutin, V.I., Smirnov, S.V., Vichuzhanin, D.I., and Matafonov, P.P., Designing New Adhesive Materials Based on Epoxy Oligomers Filled with Organic Compounds, Polymer Sci. D, 2015, vol. 8, no. 2, pp. 149–152.

    Article  Google Scholar 

  17. Lawn, B.R., Evans, A.G., and Marshall, D.B., Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack System, J. Am. Ceram. Soc., 1980, vol. 63, nos. 9–10, pp. 574–581. https://doi.org/10.1111/J.1151-2916.1980.TB10768.X

    Article  Google Scholar 

  18. Marshall, D.B. and Evans, A.G., Measurement of Adherence of Residually Stressed Thin Films by Indentation. I. Mechanics of Interface Delamination, J. Appl. Phys., 1984, vol. 56, pp. 2632–2638.

    Article  ADS  Google Scholar 

  19. Evans, A.G. and Hutchinson, J.W., On the Mechanics of Delamination and Spalling in Compressed Films, Int. J. Solids Struct., 1984, vol. 20, pp. 455–466.

    Article  Google Scholar 

  20. Hutchinson, J.W. and Suo, Z., Mixed Mode Cracking in Layered Materials, Adv. Appl. Mech., 1991, vol. 29, pp. 63–191.

    Article  Google Scholar 

  21. Boer, M.P. and Gerberich, W.W., Microwedge Indentation of the Thin Film Fine Line. I. Mechanics, Acta Mater., 1996, vol. 44, no. 8, pp. 3169–3175. https://doi.org/10.1016/1359-6454(95)00426-2

    Article  ADS  Google Scholar 

  22. Rosenfeld, L.G., Ritter, J.E., Lardner, T.J., and Lin, M.R., Use of the Microindentation Technique for Determining Interfacial Fracture Energy, J. Appl. Phys., 1990, vol. 67, p. 329. https://doi.org/10.1063/1.345363

    Article  Google Scholar 

  23. Oliver, W.C. and Pharr, G.M., An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, vol. 7, no. 6, pp. 1554–1583.

    Article  ADS  Google Scholar 

  24. Jia, Y., Peng, K., Gong, X., and Zhang, Z., Creep and Recovery of Polypropylene/Carbon Nanotube Composites, Int. J. Plasticity, 2011, no. 27, pp. 1239–1251.

    Article  Google Scholar 

  25. Kochetov, V.T., Kochetov, M.V., and Pavlenko, A.D., Strength of Materials: Handbook for Students, St. Petersburg: BKhV–St. Petersburg, 2004.

  26. Kiffer, R. and Berezowsky, F., Hard Alloys, Moscow: Metallurgia, 1971.

  27. Alfano, G. and Crisfield, M.A., Finite Element Interface Models for the Delamination Analysis of Laminated Composites: Mechanical and Computational Issues, Int. J. Numer. Meth. Eng., 2001, vol. 50, pp. 1701–1736.

    Article  Google Scholar 

  28. Xu, X. and Needleman, A., Numerical Simulation of Fast Crack Growth in Brittle Solid, J. Mech. Phys. Solids, 1994, vol. 42, no. 9, pp. 1397–1434.

    Article  ADS  Google Scholar 

  29. Hooke, R. and Jeeves, T.A., Direct Search. Solution of Numerical and Statistical Problems, J. ACM, 1961, vol. 8, pp. 212–229. https://doi.org/10.1145/321062.321069

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to A.S. Igumnov, Head of the System Support Department of the Supercomputer Center of IMM UrB RAS, for assisting the numerical computations and to V.A. Osipova from the Laboratory of Organic Materials, IOS UrB RAS, for preparing the coated specimens.

Funding

The work was performed under research project No. AAAA-A18-118020790145-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Myasnikova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, S.V., Myasnikova, M.V., Pestov, A.V. et al. A New Method for Adhesion Strength Assessment of Indented Polymer Coatings. Phys Mesomech 26, 514–522 (2023). https://doi.org/10.1134/S1029959923050041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959923050041

Keywords:

Navigation