Skip to main content
Log in

An Indentation Study of the Temperature-Dependent Properties of Modified Polyurethanes

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

Carbon nanoadditives are widely used as modifiers for various materials. An important issue is the effect of modification on the material properties, including the sensitivity to temperature changes. In this study, we performed fixed-temperature indentation of polyurethane samples produced by mortar technology with fullerenes and carbon nanotubes. It was found that the addition of modifiers not only changes the mechanical and rheological properties of the material, but also makes these properties more temperature dependent. Based on solving an axisymmetric contact problem of constant loading rate indentation of a viscoelastic half-space, a method was developed for determining material properties from experimental indentation curves obtained at different rates. The properties of the original and modified polyurethanes were determined at three fixed temperatures. The modifiers produced different effects: nanotubes increased stiffness, while fullerenes reduced it. The effect of ion plasma surface treatment, leading to the formation of a hard carbonized nanolayer, on the indentation results at different temperatures was also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Discher, D.E., Janmey, P., and Wang, Y.-L., Tissue Cells Feel and Respond to the Stiffness of Their Substrate, Science, 2005, vol. 310, pp. 1139–1143. https://doi.org/10.1126/science.1116995

    Article  ADS  Google Scholar 

  2. Engler, A., Bacakova, L., Newman, C., Hategan, A., Griffin, M., and Discher, D., Substrate Compliance Versus Ligand Density in Cell on Gel Responses, Biophys. J., 2004, vol. 86, pp. 617–628. https://doi.org/10.1016/S0006-3495(04)74140-5

    Article  ADS  Google Scholar 

  3. Sevastyanov, V.I., Biocompatibility, Moscow: ITs VNII Geosistem, 1999.

  4. Brodbeck, W.G., Colton, E., and Anderson, J.M., Effects of Adsorbed Heat Labile Serum Proteins and Fibrinogen on Adhesion and Apoptosis of Monocytes/ Macrophages on Biomaterials, J. Mater. Sci. Mater. Med., 2003, vol. 14, no. 8, pp. 671–675. https://doi.org/10.1023/A:1024951330265

    Article  Google Scholar 

  5. Hu, W.-J., Eaton, J.W., Ugarova, T.P., and Tang, L., Molecular Basis of Biomaterial-Mediated Foreign Body Reactions, Blood, 2001, vol. 98(4), pp. 1231–1238. https://doi.org/10.1182/blood.V98.4.1231

    Article  Google Scholar 

  6. Kislitsyn, V.D., Shadrin, V.V., Osorgina, I.V., and Svistkov, A.L., Analysis of the Mechanical Properties of Polyurethane Materials Manufactured by Mortar and Injection Technologies, Bull. Perm. Univ. Physics, 2020, no. 1, pp. 17–25. https://doi.org/10.17072/1994-3598-2020-1-17-25

    Article  Google Scholar 

  7. Kondyurin, A. and Bilek, M., Ion Beam Treatment of Polymers. Application Aspects from Medicine to Space, Oxford: Elsevier, 2014.

  8. Chudinov, V.S., Kondyurina, I.V., Terpugov, V.N., Shardakov, I.N., Maslova, V.V., Solodnikov, S.Yu., Fefilova, I.V., and Kondyurin, A.V., Plasma Ion Treatment of Polyurethane Implants for Reducing the Foreign Body Rejection Rate, Biomed. Eng., 2020, vol. 54, pp. 255–257. https://doi.org/10.1007/s10527-020-10016-4

    Article  Google Scholar 

  9. Chyasnavichyus, M., Young, S.L., and Tsukruk, V.V., Probing of Polymer Surfaces in the Viscoelastic Regime, Langmuir, 2014, vol. 30, no. 35, pp. 10566–10582. https://doi.org/10.1021/la404925h

    Article  Google Scholar 

  10. Zhai, M. and McKenna, G.B., Viscoelastic Modeling of Nanoindentation Experiments: A Multicurve Method, J. Polymer Sci. B. Polymer Phys., 2014, vol. 52, no. 9, pp. 633–639. https://doi.org/10.1002/polb.23470

    Article  ADS  Google Scholar 

  11. Wang, Y., Shang, L., Zhang, P., Yan, X., Zhang, K., Dou, S., Zhao, J., and Li, Y., Measurement of Viscoelastic Properties for Polymers by Nanoindentation, Polymer Test., 2020, vol. 83, p. 106353. https://doi.org/10.1016/j.polymertesting.2020.106353

    Article  Google Scholar 

  12. Stan, F., Turcanu, A.M., and Fetecau, C., Analysis of Viscoelastic Behavior of Polypropylene/Carbon Nanotube Nanocomposites by Instrumented Indentation, Polymers, 2020, vol. 12, no. 11, p. 2535. https://doi.org/10.3390/polym12112535

    Article  Google Scholar 

  13. Parvini, C.H., Saadi, M.A.S.R., and Solares, S.D., Extracting Viscoelastic Material Parameters Using an Atomic Force Microscope and Static Force Spectroscopy, Beilstein J. Nanotechnology, 2020, vol. 11, pp. 922–937. https://doi.org/10.3762/bjnano.11.77

    Article  Google Scholar 

  14. Brückner, B.R., Nöding, H., and Janshoff, A., Viscoelastic Properties of Confluent MDCK II Cells Obtained from Force Cycle Experiments, Biophys. J., 2017, vol. 112, no. 4, pp. 724–735. https://doi.org/10.1016/j.bpj.2016.12.032

    Article  ADS  Google Scholar 

  15. Efremov, Y.M., Wang, W.H., Hardy, S.D., Geahlen, R.L., and Raman, A., Measuring Nanoscale Viscoelastic Parameters of Cells Directly from AFM Force-Displacement Curves, Sci. Rep., 2017, vol. 7, p. 1541. https://doi.org/10.1038/s41598-017-01784-3

    Article  ADS  Google Scholar 

  16. Yazdi, S.J.M., Cho, K.S., and Kang, N., Characterization of the Viscoelastic Model of In Vivo Human Posterior Thigh Skin Using Ramp-Relaxation Indentation Test, Korea-Australia Rheol. J., 2018, vol. 30, pp. 293–307. https://doi.org/10.1007/s13367-018-0027-5

    Article  Google Scholar 

  17. Abuhattum, S., Mokbel, D., Müller, P., Soteriou, D., Guck, J., and Aland, S., An Explicit Model to Extract Viscoelastic Properties of Cells from AFM Force-Indentation Curves, Science, 2022, vol. 25, no. 4, p. 104016. https://doi.org/10.1016/j.isci.2022.104016

    Article  Google Scholar 

  18. Hamzaoui, R., Guessasma, S., and Bennabi, A., Characterization of the Viscoelastic Behavior of the Pure Bitumen Grades 10/20 and 35/50 with Macroindentation and Finite Element Computation, J. Appl. Polymer Sci., 2013, vol. 130, no. 5, pp. 3440–3450. https://doi.org/10.1002/app.39458

    Article  Google Scholar 

  19. Fadil, H., Jelagin, D., and Larsson, P.L., On the Measurement of Two Independent Viscoelastic Functions with Instrumented Indentation Tests, Experiment. Mech., 2018, vol. 58, pp. 301–314. https://doi.org/10.1007/s11340-017-0342-7

    Article  Google Scholar 

  20. Fadil, H., Jelagin, D., and Partl, M.N., Spherical Indentation Test for Quasi-Non-Destructive Characterisation of Asphalt Concrete, Mater. Struct., 2022, vol. 55, p. 102. https://doi.org/10.1617/s11527-022-01945-5

    Article  Google Scholar 

  21. Larsson, P.-L. and Carlsson, S., On Microindentation of Viscoelastic Polymers, Polymer Test., 1998, vol. 17, pp. 49–75. https://doi.org/10.1016/S0142-9418(97)00038-X

    Article  Google Scholar 

  22. Odegard, G.M., Gates, T.S., and Herring, H.M., Characterization of Viscoelastic Properties of Polymeric Materials through Nanoindentation, Experiment. Mech., 2005, vol. 45, pp. 130–136. https://doi.org/10.1007/BF02428185

    Article  Google Scholar 

  23. Herbert, E.G., Oliver, W.C., and Pharr, G.M., Nanoindentation and the Dynamic Characterization of Viscoelastic Solids, J. Phys. D. Appl. Phys., 2008, vol. 41, p. 074021.

    Article  Google Scholar 

  24. Yu, L.-M. and Huang, H.-X., Temperature and Shear Dependence of Rheological Behavior for Thermoplastic Polyurethane Nanocomposites with Carbon Nanofillers, Polymer, 2022, vol. 247, p. 124791. https://doi.org/10.1016/j.polymer.2022.124791

    Article  Google Scholar 

  25. Liu, F., Wang, J., Long, S., Zhang, H., and Yao, X., Experimental and Modeling Study of the Viscoelastic-Viscoplastic Deformation Behavior of Amorphous Polymers over a Wide Temperature Range, Mech. Mater., 2022, vol. 167, p. 104246. https://doi.org/10.1016/j.mechmat.2022.104246

    Article  Google Scholar 

  26. Sakai, M. and Shimizu, S., Indentation Rheometry for Glass-Forming Materials, J. Non-Crystalline Solids, 2002, vol. 282, pp. 236–247. https://doi.org/10.1016/S0022-3093(01)00316-7

    Article  ADS  Google Scholar 

  27. Lee, E.H. and Radok, J.R.M., The Contact Problem for Viscoelastic Bodies, J. Appl. Mech., 1960, vol. 27, no. 3, pp. 438–444. https://doi.org/10.1115/1.3644020

    Article  MathSciNet  ADS  Google Scholar 

  28. Hertz, H., Über die Berührung Fester Elastischer Körper, J. für die reine und angewandte Math., 1882, no. 92, pp. 156–171.

    Google Scholar 

  29. Galin, L.A., Contact Problems: The Legacy of L.A. Galin, Dordrecht, Netherlands: Springer, 2008.

  30. Ting, T.C.T., The Contact Stresses between a Rigid Indenter and a Viscoelastic Half-Space, J. Appl. Mech., 1966, vol. 33, no. 4, pp. 845–854. https://doi.org/10.1115/1.3625192

    Article  ADS  Google Scholar 

  31. Bland, D.R., The Theory of Linear Viscoelasticity, Mineola, New York: Dover Publications, Inc., 2016.

  32. López-Guerra, E.A., Eslami, B., and Solares, S.D., Calculation of Standard Viscoelastic Responses with Multiple Retardation Times through Analysis of Static Force Spectroscopy AFM Data, J. Polymer Sci. B. Polymer Phys., 2017, vol. 55, no. 10, pp. 804–813. https://doi.org/10.1002/polb.24327

    Article  ADS  Google Scholar 

  33. Christensen, R.M, Theory of Viscoelasticity: An Introduction, New York: Academic Press, 1971.

  34. Chen, D.-L., Yang, P.-F., and Lai, Y.-S., A Review of Three-Dimensional Viscoelastic Models with an Application to Viscoelasticity Characterization Using Nanoindentation, Microelectron. Reliability, 2012, vol. 52, no. 3, pp. 541–558. https://doi.org/10.1016/j.microrel.2011.10.001

    Article  Google Scholar 

  35. Lai, W.H., Kek, S.L., and Tay, K.G., Solving Nonlinear Least Squares Problem Using Gauss–Newton Method, Int. J. Innov. Sci. Eng. Technol., 2017, vol. 4, no. 1, pp. 258–262.

    Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (Grant No. 18-19-00574 P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Torskaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torskaya, E.V., Yakovenko, A.A., Shkaley, I.V. et al. An Indentation Study of the Temperature-Dependent Properties of Modified Polyurethanes. Phys Mesomech 26, 505–513 (2023). https://doi.org/10.1134/S102995992305003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102995992305003X

Keywords:

Navigation