Skip to main content
Log in

Corrosion Behavior and Biocompatibility of Graphene Oxide-Plasma Electrolytic Oxidation Coating on Magnesium Alloy

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

Due to its high deterioration rate in the physiological environment, the clinical application of magnesium (Mg) in bone repair has been restricted. Graphene oxide (GO)-plasma electrolytic oxidation (PEO) coatings were effectively applied to Mg alloy to enhance corrosion resistance and biocompatibility. The structure, biocompatibility, electrochemical characteristics, and long-term corrosion performance of composite coatings were studied in the present paper. The incorporation of GO to the PEO layer decreased wettability of all samples, resulting in hydrophobic behavior. The amount of GO incorporated in the PEO layer had a minor effect on the film thickness, but the pore size of the PEO coating decreased as the amount of GO increased. PEO/GO coatings have better corrosion resistance than counterpart PEO coatings and bare samples, according to electrochemical tests. The results also demonstrated that corrosion resistance increases significantly as GO concentration increases, owing to the fact that GO nanosheets in the coating operate as a barrier to the electrolyte diffusion route, preventing aggressive electrolytes from accessing the substrate. Because of dramatically decreased Mg ion release and changes in pH value in the culture medium, all of the PEO and PEO/GO coatings could improve MG63 cell attachment and differentiation compared to the bare Mg alloy sample. The as-prepared PEO/GO coating on Mg alloy is attractive for medical applications due to its satisfactory corrosion resistance and biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Fattah-Alhosseini, A., Chaharmahali, R., and Babaei, K., Effect of Particles Addition to Solution of Plasma Electrolytic Oxidation (PEO) on the Properties of PEO Coatings Formed on Magnesium and Its Alloys: A Review, J. Magnesium Alloys, 2020, vol. 8(3), pp. 799–818. https://doi.org/10.1016/j.jma.2020.05.001

    Article  Google Scholar 

  2. Mingo, B., Arrabal, R., Mohedano, M., Llamazares, Y., Matykina, E., Yerokhin, A., and Pardo, A., Influence of Sealing Post-Treatments on the Corrosion Resistance of PEO Coated AZ91 Magnesium Alloy, Appl. Surf. Sci., 2018, vol. 433, pp. 653–667. https://doi.org/10.1016/j.apsusc.2017.10.083

    Article  ADS  Google Scholar 

  3. Yang, J., Blawert, C., Lamaka, S.V., Snihirova, D., Lu, X., Di, S., and Zheludkevich, M.L., Corrosion Protection Properties of Inhibitor Containing Hybrid PEO-Epoxy Coating on Magnesium, Corrosion Sci., 2018, vol. 140, pp. 99–110. https://doi.org/10.1016/j.corsci.2018.06.014

    Article  Google Scholar 

  4. Chen, Q., Jiang, Z., Tang, S., Dong, W., Tong, Q., and Li, W., Influence of Graphene Particles on the Micro-Arc Oxidation Behaviors of 6063 Aluminum Alloy and the Coating Properties, Appl. Surf. Sci., 2017, vol. 423, pp. 939–950. https://doi.org/10.1016/j.apsusc.2017.06.202

    Article  ADS  Google Scholar 

  5. Babaei, K., Fattah-Alhosseini, A., and Molaei, M., The Effects of Carbon-Based Additives on Corrosion and Wear Properties of Plasma Electrolytic Oxidation (PEO) Coatings Applied on Aluminum and Its Alloys: A Review, Surf. Interfaces, 2020, vol. 21, p. 100677. https://doi.org/10.1016/j.surfin.2020.100677

    Article  Google Scholar 

  6. Fattah-Alhosseini, A., Molaei, M., Nouri, M., and Babaei, K., Review of the Role of Graphene and Its Derivatives in Enhancing the Performance of Plasma Electrolytic Oxidation Coatings on Titanium and Its Alloys, Appl. Surf. Sci. Adv., 2021, vol. 6, p. 100140. https://doi.org/10.1016/j.apsadv.2021.100140

    Article  Google Scholar 

  7. Ramezanzadeh, B., Niroumandrad, S., Ahmadi, A., Mahdavian, M., and Moghadam, M.M., Enhancement of Barrier and Corrosion Protection Performance of an Epoxy Coating Through Wet Transfer of Amino Functionalized Graphene Oxide, Corrosion Sci., 2016, vol. 103, pp. 283–304. https://doi.org/10.1016/j.corsci.2015.11.033

    Article  Google Scholar 

  8. Schneider, M., Kremmer, K., and Höhn, S., Corrosion Protection of Thickness Reduced Plasma Electrolytic Layers on AZ31, Mater. Corrosion, 2016, vol. 67(9), pp. 921–928. https://doi.org/10.1002/maco.201508763

    Article  Google Scholar 

  9. Kirkland, N.T., Schiller, T., Medhekar, N., and Birbilis, N., Exploring Graphene as a Corrosion Protection Barrier, Corrosion Sci., 2012, vol. 56, pp. 1–4. https://doi.org/10.1016/j.corsci.2011.12.003

    Article  Google Scholar 

  10. Qiu, Z., Wang, R., Wu, J., Zhang, Y., Qu, Y., and Wu, X., Graphene Oxide as a Corrosion-Inhibitive Coating on Magnesium Alloys, RSC Adv., 2015, vol. 5(55), pp. 44149–44159. https://doi.org/10.1039/C5RA05974G

    Article  ADS  Google Scholar 

  11. Hwang, M. and Chung, W., Effects of a Carbon Nanotube Additive on the Corrosion-Resistance and Heat-Dissipation Properties of Plasma Electrolytic Oxidation on AZ31 Magnesium Alloy, Materials, 2018, vol. 11(12), p. 2438. https://doi.org/10.3390/ma11122438

    Article  ADS  Google Scholar 

  12. Lin, X., Tan, L., Zhang, Q., Yang, K., Hu, Z., Qiu, J., and Cai, Y., The In Vitro Degradation Process and Biocompatibility of a ZK60 Magnesium Alloy with a Forsterite-Containing Micro-Arc Oxidation Coating, Acta Biomater., 2013, vol. 9(10), p. 8631–8642. https://doi.org/10.1016/j.actbio.2012.12.016

    Article  Google Scholar 

  13. Nie, X., Wang, L., Konca, E., and Alpas, A.T., Tribological Behaviour of Oxide/Graphite Composite Coatings Deposited Using Electrolytic Plasma Process, Surf. Coat. Technol., 2004, vol. 188, pp. 207–213. https://doi.org/10.1016/j.surfcoat.2004.08.025

    Article  Google Scholar 

  14. Fasiku, V., Owonubi, S.J., Mukwevho, E., Aderibigbe, B.A., Lemmer, Y., Neerish, R., and Sadiku, E.R., Graphene-Based Materials for Iimplants, Graphene Biomater., 2019, pp. 143–175. https://doi.org/10.1002/9781119468455.ch117

  15. Wen, C., Zhan, X., Huang, X., Xu, F., Luo, L., and Xia, C., Characterization and Corrosion Properties of Hydroxyapatite/Graphene Oxide Bio-Composite Coating on Magnesium Alloy by One-Step Micro-Arc Oxidation Method, Surf. Coat. Technol., 2017, vol. 317, pp. 125–133. https://doi.org/10.1016/j.surfcoat.2017.03.034

    Article  Google Scholar 

  16. Singh, B.P., Nayak, S., Nanda, K.K., Jena, B.K., Bhattacharjee, S., and Besra, L., The Production of a Corrosion Resistant Graphene Reinforced Composite Coating on Copper by Electrophoretic Deposition, Carbon, 2013, vol. 61, pp. 47–56. https://doi.org/10.1016/j.carbon.2013.04.063

    Article  Google Scholar 

  17. Lin, Z., Wang, T., Yu, X., Sun, X., and Yang, H., Functionalization Treatment of Micro-Arc Oxidation Coatings on Magnesium Alloys: A Review, J. Alloys Compnd., 2021, vol. 879, p. 160453. https://doi.org/10.1016/j.jallcom.2021.160453

    Article  Google Scholar 

  18. Chen, Q., Jiang, Z., Tang, S., Dong, W., Tong, Q., and Li, W., Influence of Graphene Particles on the Micro-Arc Oxidation Behaviors of 6063 Aluminum Alloy and the Coating Properties, Appl. Surf. Sci., 2017, vol. 423, pp. 939–950. https://doi.org/10.1016/j.apsusc.2017.06.202

    Article  ADS  Google Scholar 

  19. Zhao, J., Xie, X., and Zhang, C., Effect of the Graphene Oxide Additive on the Corrosion Resistance of the Plasma Electrolytic Oxidation Coating of the AZ31 Magnesium Alloy, Corrosion Sci., 2017, vol. 114, pp. 146–155. https://doi.org/10.1016/j.corsci.2016.11.007

    Article  Google Scholar 

  20. Mazinani, A., Nine, M.J., Chiesa, R., Candiani, G., Tarsini, P., Tung, T.T., and Losic, D., Graphene Oxide (GO) Decorated on Multi-Structured Porous Titania Fabricated by Plasma Electrolytic Oxidation (PEO) for Enhanced Antibacterial Performance, Mater. Design, 2021, vol. 200, p. 109443. https://doi.org/10.1016/j.matdes.2020.109443

    Article  Google Scholar 

  21. ASTM G1-3, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens, 2004.

  22. Lv, G.H., Chen, H., Gu, W.C., Li, L., Niu, E.W., Zhang, X.H., and Yang, S.Z., Effects of Current Frequency on the Structural Characteristics and Corrosion Property of Ceramic Coatings Formed on Magnesium Alloy by PEO Technology, J. Mater. Proc. Technol., 2008, vol. 208(1–3), pp. 9–13. https://doi.org/10.1016/j.jmatprotec.2007.12.125

    Article  Google Scholar 

  23. Zhang, Y., Chen, F., Zhang, Y., and Du, C., Influence of Graphene Oxide Additive on the Tribological and Electrochemical Corrosion Properties of a PEO Coating Prepared on AZ31 Magnesium Alloy, Tribology Int., 2020, vol. 146, p. 106135. https://doi.org/10.1016/j.triboint.2019.106135

    Article  Google Scholar 

  24. Bordbar-Khiabani, A., Ebrahimi, S., and Yarmand, B., Highly Corrosion Protection Properties of Plasma Electrolytic Oxidized Titanium Using rGO Nanosheets, Appl. Surf. Sci., 2019, vol. 486, pp. 153–165. https://doi.org/10.1016/j.apsusc.2019.05.026

    Article  ADS  Google Scholar 

  25. Chen, X., Liao, D., Zhang, D., Jiang, X., Zhao, P., and Xu, R., Friction and Wear Behavior of Graphene-Modified Titanium Alloy Micro-Arc Oxidation Coatings, Trans. Indian Inst. Met., 2020, vol. 73(1), pp. 73–80. https://doi.org/10.1007/s12666-019-01804-y

    Article  Google Scholar 

  26. Kucukosman, R., Sukuroglu, E.E., Totik, Y., and Sukuroglu, S., Effects of Graphene Oxide Addition on Wear Behaviour of Composite Coatings Fabricated by Plasma Electrolytic Oxidation (PEO) on AZ91 Magnesium Alloy, J. Adhesion Sci. Technol., 2021, vol. 35(3), pp. 242–255. https://doi.org/10.1080/01694243.2020.1800289

    Article  Google Scholar 

  27. Liu, W., Pu, Y., Liao, H., Lin, Y., and He, W., Corrosion and Wear Behavior of PEO Coatings on D16T Aluminum Alloy with Different Concentrations of Graphene, Coatings, 2020, vol. 10(3), p. 249. https://doi.org/10.3390/coatings10030249

    Article  Google Scholar 

  28. Nasiri Vatan, H. and Adabi, M., Investigation of Tribological Behavior of Ceramic–Graphene Composite Coating Produced by Plasma Electrolytic Oxidation, Trans. Indian Inst. Met., 2018, vol. 71(7), pp. 1643–1652. https://doi.org/10.1007/s12666-018-1300-5

    Article  Google Scholar 

  29. Javed, R.M.N., Al-Othman, A., Tawalbeh, M., and Olabi, A.G., Recent Developments in Graphene and Graphene Oxide Materials for Polymer Electrolyte Membrane Fuel Cells Applications, Renewable Sustainable Energy Rev., 2022, vol. 168, p. 112836. https://doi.org/10.1016/j.rser.2022.112836

    Article  Google Scholar 

  30. Sampatirao, H., Amruthaluru, S., Chennampalli, P., Lingamaneni, R.K., and Nagumothu, R., Fabrication of Ceramic Coatings on the Biodegradable ZM21 Magnesium Alloy by PEO Coupled EPD Followed by Laser Texturing Process, J. Magn. Alloys, 2021, vol. 9(3), pp. 910–926. https://doi.org/10.1016/j.jma.2020.10.002

    Article  Google Scholar 

  31. Li, T., Li, L., Qi, J., and Chen, F., Corrosion Protection of Ti6Al4V by a Composite Coating with a Plasma Electrolytic Oxidation Layer and Sol-Gel Layer Filled with Graphene Oxide, Progr. Organ. Coat., 2020, vol. 144, p. 105632. https://doi.org/10.1016/j.porgcoat.2020.105632

    Article  Google Scholar 

  32. Hamrahi, B., Yarmand, B., and Massoudi, A., Improved In-Vitro Corrosion Performance of Titanium Using a Duplex System of Plasma Electrolytic Oxidation and Graphene Oxide Incorporated Silane Coatings, Surf. Coat. Technol., 2021, vol. 422, p. 127558. https://doi.org/10.1016/j.surfcoat.2021.127558

    Article  Google Scholar 

  33. Sarbishei, S., Sani, M.A., and Mohammadi, M.R., Effects of Alumina Nanoparticles Concentration on Microstructure and Corrosion Behavior of Coatings Formed on Titanium Substrate Via PEO Process, Ceramics Int., 2016, vol. 42(7), pp. 8789–8797. https://doi.org/10.1016/j.ceramint.2016.02.120

    Article  Google Scholar 

  34. Khiabani, A.B., Rahimi, S., Yarmand, B., and Mozafari, M., Electrophoretic Deposition of Graphene Oxide on Plasma Electrolytic Oxidized-Magnesium Implants for Bone Tissue Engineering Applications, Mater. Today Proc., 2018, vol. 5(7), pp. 15603–15612. https://doi.org/10.1016/j.matpr.2018.04.169

    Article  Google Scholar 

  35. Tang, Z., Zhao, L., Yang, Z., Liu, Z., Gu, J., Bai, B., Liu, J., Xu, J., and Yang, H., Mechanisms of Oxidative Stress, Apoptosis, and Autophagy Involved in Graphene Oxide Nanomaterial Anti-Osteosarcoma Effect, Int. J. Nanomedicine, 2018, vol. 13, p. 2907. https://doi.org/10.2147/IJN.S159388

    Article  Google Scholar 

  36. Aktug, S.L., Durdu, S., Aktas, S., Yalcin, E., and Usta, M., Surface and In Vitro Properties of Ag-Deposited Antibacterial and Bioactive Coatings on AZ31 Mg Alloy, Surf. Coat. Technol., 2019, vol. 375, pp. 46–53. https://doi.org/10.1016/j.surfcoat.2019.07.013

    Article  Google Scholar 

  37. Narayanan, T.S., Park, I.S., and Lee, M.H., Strategies to Improve the Corrosion Resistance of Microarc Oxidation (MAO) Coated Magnesium Alloys for Degradable Implants: Prospects and Challenges, Progr. Mater. Sci., 2014, vol. 60, pp. 1–71. https://doi.org/10.1016/B978-1-78242-078-1.00009-8

    Article  Google Scholar 

  38. Hosseini, S. and Farnoush, H., Characterization and In Vitro Bioactivity of Electrophoretically Deposited Mn-Modified Bioglass-Alginate Nanostructured Composite Coatings, Mater. Res. Express, 2018, vol. 6(2), p. 025404. https://doi.org/10.1088/2053-1591/aaedfe

    Article  Google Scholar 

  39. Wang, C.X., Wang, M., and Zhou, X., Nucleation and Growth of Apatite on Chemically Treated Titanium Alloy: An Electrochemical Impedance Spectroscopy Study, Biomaterials, 2003, vol. 24(18), pp. 3069–3077. https://doi.org/10.1016/S0142-9612(03)00154-6

    Article  Google Scholar 

  40. Rajesh, R. and Ravichandran, Y.D., Development of New Graphene Oxide Incorporated Tricomponent Scaffolds with Polysaccharides and Hydroxyapatite and Study of Their Osteoconductivity on MG-63 Cell Line for Bone Tissue Engineering, RSC Adv., 2015, vol. 5(51), pp. 41135–41143. https://doi.org/

    Article  ADS  Google Scholar 

  41. Madhankumar, A., Thangavel, E., Ramakrishna, S., Obot, I.B., Jung, H.C., Shin, K.S., Gasem, Z.M., Kim, H., and Kim, D.E., Multi-Functional Ceramic Hybrid Coatings on Biodegradable AZ31 Mg Implants: Electrochemical, Tribological and Quantum Chemical Aspects for Orthopaedic Applications, RSC Adv., 2014, vol. 4(46), pp. 24272–24285. https://doi.org/10.1039/c4ra02363c

    Article  ADS  Google Scholar 

  42. Farshid, S. and Kharaziha, M., Micro and Nano-Enabled Approaches to Improve the Performance of Plasma Electrolytic Oxidation Coated Magnesium Alloys, J. Magn. Alloys, 2021, vol. 9(5), pp. 1487–1504. https://doi.org/10.1016/j.jma.2020.11.004

    Article  Google Scholar 

  43. Rikhari, B., Mani, S.P., and Rajendran, N., Polypyrrole/Graphene Oxide Composite Coating on Ti Implants: A Promising Material for Biomedical Applications, J. Mater. Sci., 2020, vol. 55, pp. 5211–5229. https://doi.org/10.1007/s10853-019-04228-7

    Article  ADS  Google Scholar 

  44. Kim, J.D., Yun, H., Kim, G.C., Lee, C.W., and Choi, H.C., Antibacterial Activity and Reusability of CNT-Ag and GO-Ag Nanocomposites, Appl. Surf. Sci., 2013, vol. 283, pp. 227–233. https://doi.org/10.1016/j.apsusc.2013.06.086

    Article  ADS  Google Scholar 

  45. Depan, D., Girase, B., Shah, J.S., and Misra, R.D., Structure–Process–Property Relationship of the Polar Graphene Oxide-Mediated Cellular Response and Stimulated Growth of Osteoblasts on Hybrid Chitosan Network Structure Nanocomposite Scaffolds, Acta Biomater., 2011, vol. 7(9), pp. 3432–3445. https://doi.org/10.1016/j.actbio.2011.05.019

    Article  Google Scholar 

  46. Jafarzadeh, A., Ahmadi, T., Dehaghani, M.T., and Mohemi, K., Synthesis, Corrosion and Bioactivity Evaluation of Gelatin/Silicon and Magnesium Co-Doped Fluorapatite Nanocomposite Coating Applied on AZ31 Mg Alloy, Russ. J. Non-Ferr. Met., 2018, vol. 59(4), pp. 458–464. https://doi.org/10.3103/S1067821218040077

    Article  Google Scholar 

  47. Jabbarzare, S., Bakhsheshi-Rad, H.R., Nourbakhsh, A.A., Ahmadi, T., and Berto, F., Effect of Graphene Oxide on the Corrosion, Mechanical and Biological Properties of Mg-Based Nanocomposite, Int. J. Min. Metall. Mater., 2022, vol. 29(2), pp. 305–319. https://doi.org/10.1007/s12613-020-2201-2

    Article  Google Scholar 

  48. Shuai, C., Guo, W., Wu, P., Yang, W., Hu, S., Xia, Y., and Feng, P., A Graphene Oxide-Ag Co-dispersing Nanosystem: Dual Synergistic Effects on Antibacterial Activities and Mechanical Properties of Polymer Scaffolds, Chem. Eng. J., 2018, vol. 347, pp. 322–333. https://doi.org/10.1016/j.cej.2018.04.092

    Article  Google Scholar 

  49. Bakhsheshi-Rad, H.R., Hamzah, E., Ismail, A.F., Aziz, M., Daroonparvar, M., Saebnoori, E., and Chami, A., In Vitro Degradation Behavior, Antibacterial Activity and Cytotoxicity of TiO2-MAO/ZnHA Composite Coating on Mg Alloy for Orthopedic Implants, Surf. Coat. Technol., 2018, vol. 334, pp. 450–460. https://doi.org/10.1016/j.surfcoat.2017.11.027

    Article  Google Scholar 

  50. Shchitsyn, Yu.D., Krivonosova, E.A., Neulybin, S.D., Nikulin, R.G., Hassel, T., and Trushnikov, D.N., Characteristics of Structure and Properties of Magnesium Alloys during Plasma Additive Deposition, Phys. Mesomech., 2021, vol. 24, no. 6, pp. 716–723. https://doi.org/10.1134/S1029959921060102

    Article  Google Scholar 

  51. Saberi, A., Bakhsheshi-Rad, H.R., Karamian, E., Kasiri-Asgarani, M., Ghomi, H., Omidi, M., Abazari, S., Ismail, A.F., Sharif, S., and Berto, F., Synthesis and Characterization of Hot Extruded Magnesium-Zinc Nano-Composites Containing Low Content of Graphene Oxide for Implant Applications, Phys. Mesomech., 2021, vol. 24, no. 4, pp. 486–502. https://doi.org/10.1134/S1029959921040135

    Article  Google Scholar 

  52. Mohemi, K., Ahmadi, T., Jafarzadeh, A., Bakhsheshi-Rad, H.R., Taghian Dehaghani, M., and Berto, F., Synthesis, Corrosion, and Bioactivity Evaluation of the Hybrid Anodized Polycaprolactone Fumarate/Silicon- and Magnesium-Codoped Fluorapatite Nanocomposite Coating on AZ31 Magnesium Alloy, Phys. Mesomech., 2022, vol. 25, no. 1, pp. 85–96. https://doi.org/10.1134/S1029959922010106

    Article  Google Scholar 

  53. Panin, A.V. and Shugurov, A.R., Local Curvature of Internal and External Interfaces in Mass Transfer Responsible for Thin Film Degradation, Phys. Mesomech., 2013, vol. 16, no. 4, pp. 348–354. https://doi.org/10.1134/S1029959913040085

    Article  Google Scholar 

  54. Shugurov, A.R. and Panin, A.V., Effect of Local Curvature of the Coating–Substrate Interface on Deformation and Fracture of Ceramic Coatings under Uniaxial Tension, Phys. Mesomech., 2017, vol. 20, no. 4, pp. 472–479. https://doi.org/10.1134/S1029959917040130

    Article  Google Scholar 

  55. Yankovskii, A.P., Effect of Thermal Action on Hardening of Specimens with Thin Hard Coatings, Phys. Mesomech., 2012, vol. 15, no. 1–2, pp. 112–121. https://doi.org/10.1134/S1029959912010122

    Article  Google Scholar 

  56. Konovalenko, Ig.S., Dmitriev, A.I., Smolin, A.Yu., and Psakhie, S.G., On the Estimation of Strength Properties of Porous Ceramic Coatings, Phys. Mesomech., 2012, vol. 15, no. 1–2, pp. 88–93. https://doi.org/10.1134/S1029959912010092

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ahmadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaili, S., Ahmadi, T., Nourbakhsh, A.A. et al. Corrosion Behavior and Biocompatibility of Graphene Oxide-Plasma Electrolytic Oxidation Coating on Magnesium Alloy. Phys Mesomech 25, 583–599 (2022). https://doi.org/10.1134/S1029959922060108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959922060108

Keywords:

Navigation