Skip to main content
Log in

The Nature and Features of the Fracture Surface in the Hydrogen-Embrittled Low Alloy Steel with Ultrafine-Grained Microstructure

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

It has been shown recently that hydrogen embrittlement in severely deformed low alloy steel results in the formation of specific tearing morphology on the fracture surface. The origin of such a fracture surface has not yet been fully understood. This paper reports the results of fractographic examination combined with electron backscatter diffraction study of the microstructure underlying the fracture surface in ultrafine-grained low alloy steel 09G2S produced by equal channel angular pressing. Tensile tests are carried out on hydrogen-free and cathodically hydrogen-charged specimens. It is found that all hydrogen-charged specimens exhibit tearing fracture morphology and numerous secondary cracks. The metallographic images obtained by scanning electron microscopy and electron backscatter diffraction clearly show that both hydrogen-induced cracking and hydrogen-assisted cracking in the ultrafine-grained steel occur primarily along hydrogen-embrittled high- and low-angle ultrafine grain boundaries and dislocation cell walls, resulting in the formation of tearing morphology on the fracture surface. The mechanism governing the formation of specific morphological elements on the fracture surface is proposed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Louthan, M.R., Hydrogen Embrittlement of Metals: A Primer for the Failure Analyst, J. Fail. Anal. Prev., 2008, vol. 8, pp. 289–307. https://doi.org/10.1007/s11668-008-9133-x

    Article  Google Scholar 

  2. Claeys, L., De Graeve, I., Depover, T., and Verbeken, K., Hydrogen-Assisted Cracking in 2205 Duplex Stainless Steel: Initiation, Propagation and Interaction with Deformation-Induced Martensite, Mater. Sci. Eng. A, 2020, vol. 797. https://doi.org/10.1016/j.msea.2020.140079

  3. Kyriakopoulou, H.P., Karmiris-Obratański, P., Tazedakis, A.S., Daniolos, N.M., Dourdounis, E.C., Manolakos, D.E., and Pantelis, D., Investigation of Hydrogen Embrittlement Susceptibility and Fracture Toughness Drop after In Situ Hydrogen Cathodic Charging for an X65 Pipeline Steel, Micromachines, 2020, vol. 11, pp. 1–21. https://doi.org/10.3390/MI11040430

    Article  Google Scholar 

  4. Dwivedi, S.K. and Vishwakarma, M., Effect of Hydrogen in Advanced High Strength Steel Materials, Int. J. Hydrogen Energy, 2019, vol. 44, pp. 28007–28030. https://doi.org/10.1016/j.ijhydene.2019.08.149

    Article  Google Scholar 

  5. Arora, A., Singh, H., and Mahajan, D.K., Towards the Prediction of Intergranular Fatigue Crack Initiation in Metals due to Hydrogen, Mater. Sci. Eng. A, 2020, vol. 787. https://doi.org/10.1016/j.msea.2020.139488

  6. Wang, S., Martin, M.L., Sofronis, P., Ohnuki, S., Hashimoto, N., and Robertson, I.M., Hydrogen-Induced Intergranular Failure of Iron, Acta Mater., 2014, vol. 69, pp. 275–282. https://doi.org/10.1016/j.actamat.2014.01.060

    Article  ADS  Google Scholar 

  7. McMahon, C.J., Hydrogen-Induced Intergranular Fracture of Steels, Eng. Fract. Mech., 2001, vol. 68, pp. 773–788. https://doi.org/10.1016/S0013-7944(00)00124-7

    Article  Google Scholar 

  8. Gong, P., Nutter, J., Rivera-Diaz-Del-Castillo, P.E.J., and Rainforth, W.M., Hydrogen Embrittlement through the Formation of Low-Energy Dislocation Nanostructures in Nanoprecipitation-Strengthened Steels, Sci. Adv., 2020, vol. 6. https://doi.org/10.1126/sciadv.abb6152

  9. Nakasato, F. and Bernstein, I., Crystallographic and Fractographic Studies of Hydrogen-Induced Cracking in Purified Iron and Iron–Silicon Alloys, Metall. Mater. Trans. A, 1978, vol. 9, pp. 1317–1326. https://doi.org/10.1007/bf02652256

    Article  ADS  Google Scholar 

  10. Tetelman, A. and Robertson, W., Direct Observation and Analysis of Crack Propagation in Iron–3% Silicon Single Crystals, Acta Metall., 1963, vol. 11, pp. 415–426. https://doi.org/10.1016/0001-6160(63)90166-4

    Article  Google Scholar 

  11. Botvina, L., Tetyueva, T., and Ioffe, A., Stages of Multiple Fracture of Low-Alloy Steels in a Hydrogen Sulfide Medium, Met. Sci. Heat Treat., 1998, vol. 40, pp. 61–70. https://doi.org/10.1007/bf02468260

    Article  ADS  Google Scholar 

  12. Martin, M.L., Fenske, J.A., Liu, G.S., Sofronis, P., and Robertson, I.M., On the Formation and Nature of Quasi-Cleavage Fracture Surfaces in Hydrogen-Embrittled Steels, Acta Mater., 2011, vol. 59, pp. 1601–1606. https://doi.org/10.1016/j.actamat.2010.11.024

    Article  ADS  Google Scholar 

  13. Merson, E., Myagkikh, P., Poluyanov, V., Dorogov, M., Merson, D., and Vinogradov, A., The Fundamental Difference between Cleavage and Hydrogen-Assisted Quasi-Cleavage in Ferritic Materials Revealed by Multiscale Quantitative Fractographic and Side Surface Characterization, Mater. Sci. Eng. A, 2021, vol. 824, p. 141826. https://doi.org/10.1016/j.msea.2021.141826

    Article  Google Scholar 

  14. Merson, E., Poluyanov, V., Myagkikh, P., Merson, D., and Vinogradov, A., Quantitative Comparison of Cleavage and Quasi-Cleavage Fracture Surfaces in Hydrogen-Embrittled Low-Carbon Steel, Lett. Mater., 2020, vol. 10, pp. 303–308. https://doi.org/10.22226/2410-3535-2020-3-303-308

    Article  Google Scholar 

  15. Merson, E.D., Myagkikh, P.N., Poluyanov, V.A., Merson, D.L., and Vinogradov, A., Quasi-Cleavage Hydrogen-Assisted Cracking Path Investigation by Fractographic and Side Surface Observations, Eng. Fract. Mech., 2019, vol. 214, pp. 177–193. https://doi.org/10.1016/j.engfracmech.2019.04.042

    Article  Google Scholar 

  16. Merson, E.D., Myagkikh, P.N., Klevtsov, G.V., Merson, D.L., and Vinogradov, A., Effect of Fracture Mode on Acoustic Emission Behavior in the Hydrogen-Embrittled Low-Alloy Steel, Eng. Fract. Mech., 2019, vol. 210, pp. 342–357. https://doi.org/10.1016/j.engfracmech.2018.05.026

    Article  Google Scholar 

  17. Merson, E.D., Myagkikh, P.N., Klevtsov, G.V., Merson, D.L., and Vinogradov, A., Effect of Hydrogen Concentration and Strain Rate on Hydrogen Embrittlement of Ultrafine-Grained Low-Carbon Steel, Springer Int. Publ., 2021. https://doi.org/10.1007/978-3-030-66948-5_10

  18. Merson, E., Vinogradov, A., and Merson, D.L., Application of Acoustic Emission Method for Investigation of Hydrogen Embrittlement Mechanism in the Low-Carbon Steel, J. Alloys Compnd, 2015, vol. 645, pp. S460–S463. https://doi.org/10.1016/j.jallcom.2014.12.083

  19. Merson, E., Kudrya, A.V., Trachenko, V.A., Merson, D., Danilov, V., and Vinogradov, A., Quantitative Characterization of Cleavage and Hydrogen-Assisted Quasi-Cleavage Fracture Surfaces with the Use of Confocal Laser Scanning Microscopy, Mater. Sci. Eng. A, 2016, vol. 665, pp. 35–46. https://doi.org/10.1016/j.msea.2016.04.023

    Article  Google Scholar 

  20. Okada, K., Shibata, A., Takeda, Y., and Tsuji, N., Crystallographic Feature of Hydrogen-Related Fracture in 2Mn-0.1C Ferritic Steel, Int. J. Hydrogen Energy, 2018, vol. 43, pp. 11298–11306. https://doi.org/10.1016/j.ijhydene.2018.05.011

    Article  Google Scholar 

  21. Mine, Y., Matsumoto, S., and Horita, Z., Strengthening and Hydrogen Embrittlement of Ultrafine-Grained Fe–0.01 mass % C Alloy Processed by High-Pressure Torsion, Corrosion Sci., 2011, vol. 53, pp. 2969–2977. https://doi.org/10.1016/j.corsci.2011.05.052

    Article  Google Scholar 

  22. Merson, E., Myagkikh, P., Klevtsov, G., Merson, D., and Vinogradov, A., Effect of Equal-Channel Angular Pressing (ECAP) and Current Density of Cathodic Hydrogen Charging on Hydrogen Trapping in the Low-Alloy Steel, Lett. Mater., 2020, vol. 10, pp. 152–157. https://doi.org/10.22226/2410-3535-2020-2-152-157

    Article  Google Scholar 

  23. Hadam, U. and Zakroczymski, T., Absorption of Hydrogen in Tensile Strained Iron and High-Carbon Steel Studied by Electrochemical Permeation and Desorption Techniques, Int. J. Hydrogen Energy, 2009, vol. 34, pp. 2449–2459. https://doi.org/10.1016/j.ijhydene.2008.12.088

    Article  Google Scholar 

  24. Nagumo, M., Takai, K., and Okuda, N., Nature of Hydrogen Trapping Sites in Steels Induced by Plastic Deformation, J. Alloys Compnd, 1999, vol. 293, pp. 310–316. https://doi.org/10.1016/S0925-8388(99)00322-9

    Article  Google Scholar 

  25. Lee, J.Y. and Lee, J.L., A Trapping Theory of Hydrogen in Pure Iron, Philos. Mag. A, 1987, vol. 56, pp. 293–309. https://doi.org/10.1080/01418618708214387

    Article  ADS  Google Scholar 

  26. Pressouyre, G.M., A Classification of Hydrogen Traps in Steel, Metall. Trans. A, 1979, vol. 10, pp. 1571–1573. https://doi.org/10.1007/BF02812023

    Article  Google Scholar 

  27. Mine, Y., Tsumagari, T., and Horita, Z., Hydrogen Trapping on Lattice Defects Produced by High-Pressure Torsion in Fe–0.01 mass % C Alloy, Scripta Mater., 2010, vol. 63, pp. 552–555. https://doi.org/10.1016/j.scriptamat.2010.05.027

    Article  Google Scholar 

  28. Mine, Y., Tachibana, K., and Horita, Z., Effect of Hydrogen on Tensile Properties of Ultrafine-Grained Type 310S Austenitic Stainless Steel Processed by High-Pressure Torsion, Metall. Mater. Trans. A, 2011, vol. 42, pp. 1619–1629. https://doi.org/10.1007/s11661-010-0558-y

    Article  Google Scholar 

  29. Kimura, Y., Sakai, Y., Hara, T., Belyakov, A., and Tsuzaki, K., Hydrogen Induced Delayed Fracture of Ultrafine Grained 0.6% O Steel with Dispersed Oxide Particles, Scripta Mater., 2003, vol. 49, pp. 1111–1116. https://doi.org/10.1016/j.scriptamat.2003.08.006

    Article  Google Scholar 

  30. Choo, W.Y. and Lee, J., Hydrogen Trapping Phenomena in Carbon Steel, J. Mater. Sci., 1982, vol. 17, pp. 1930–1938. https://doi.org/10.1007/BF00540409

    Article  ADS  Google Scholar 

  31. Lynch, S.P., Hydrogen Embrittlement Phenomena and Mechanisms, Corros. Rev., 2012, vol. 30, pp. 63–133. https://doi.org/10.1515/corrrev-2012-0502

    Article  Google Scholar 

  32. Robertson, I.M., Sofronis, P., Nagao, A., Martin, M.L., Wang, S., Gross, D.W., et al., Hydrogen Embrittlement Understood, Metall. Mater. Trans. A, 2015, vol. 46, pp. 2323–2341. https://doi.org/10.1007/s11661-015-2836-1

    Article  Google Scholar 

  33. Wert, C.A. and Frank, R.C., Trapping of Interstitials in Metals, Annu. Rev. Mater. Sci., 1983, vol. 13, pp. 139–172. https://doi.org/10.1146/annurev.ms.13.080183.001035

    Article  ADS  Google Scholar 

  34. Krom, A. and Bakker, A., Hydrogen Trapping Models in Steel, Metall. Mater. Trans. B, 2000, vol. 31, pp. 1475–1482. https://doi.org/10.1007/s11663-000-0032-0

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We appreciate the help of Prof. R.Z. Valiev and his colleagues (Ufa State Aviation Technical University) and Prof. G.V. Klevtsov (Togliatti State University) in providing the ultrafine-grained material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Merson.

Additional information

Translated from Fizicheskaya Mezomekhanika, 2022, Vol. 25, No. 3, pp. 15–26.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merson, E.D., Poluyanov, V.A., Myagkikh, P.N. et al. The Nature and Features of the Fracture Surface in the Hydrogen-Embrittled Low Alloy Steel with Ultrafine-Grained Microstructure. Phys Mesomech 25, 393–403 (2022). https://doi.org/10.1134/S1029959922050022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959922050022

Keywords:

Navigation