Skip to main content
Log in

Structure, mechanical characteristics, and deformation and fracture features of quenched structural steel under static and cyclic loading after combined strain-heat nanostructuring treatment

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

In the work, we studied the special features of deformation and fracture of quenched steel 50 (0.51%) under static and cyclic tension after combined strain-heat nanostructuring treatment, which includes fictional treatment with subsequent tempering at 350°C. It is shown that the combined nanostructuring treatment of quenched steel 50 changes the character of plastic flow, making it more uniform, in the loaded material. Under static tension, this shows up as disappearance of the yield plateau early in the process, and under cyclic loading, as suppression of the deformation relief formed by shear and rotational deformation modes. Despite incipient cracks, the hardened surface layer thus escapes complete fracture throughout the fatigue loading and preserves its resistance to mechanical contact action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Panin, V.E., Physical Mesomechanics of Solid Surface Layers, Phys. Mesomech., 1999, vol. 2, no. 6, pp. 5–21.

    ADS  MathSciNet  Google Scholar 

  2. Panin, V.E., Sergeev, V.P., and Panin, A.V., Nanostructuring of Surface Layers of Structural Materials and Deposition of Nanostructured Coatings, Tomsk: TPU Publ., 2008.

    Google Scholar 

  3. Chen, X.H., Lu, J., Lu, L., and Lu, K., Tensile Properties of a Nanocrystalline 316L Austenitic Stainless Steel, Scripta Mater., 2005, vol. 52, no. 10, pp. 1039–1044.

    Article  Google Scholar 

  4. Roland, T., Retraint, D., Lu, K., and Lu, J., Fatigue Life Improvement through Surface Nanostructuring of Stainless Steel by Means of Surface Mechanical Attrition Treatment, Scripta Mater., 2006, vol. 54, no. 11, pp. 1949–1954.

    Article  Google Scholar 

  5. Mordyuk, B.N. and Prokopenko, G.I., Ultrasonic Impact Peening for the Surface Properties Management, J. Sound Vibration, 2007, vol. 308, no. 3–5, pp. 855–866.

    Article  ADS  Google Scholar 

  6. Nalla, R.K., Altenberger, I., Noster, U., Liu, G.Y., Scholtes, B., and Ritchie, R.O., On the Influence of Mechanical Surface Treatments—Deep Rolling and Laser Shock Peening—on the Fatigue Behavior of Ti-6Al-4V at Ambient and Elevated Temperatures, Mater. Sci. Eng. A., 2003, vol. 355, no. 1–2, pp. 216–230.

    Article  Google Scholar 

  7. Torres, M.A.S. and Voorwald, H.J.C., An Evaluation of Shot Peening, Residual Stress and Stress Relaxation on the Fatigue Life of AISI 4340 Steel, Int. J. Fatigue, 2002, vol. 24, no. 8, pp. 877–886.

    Article  Google Scholar 

  8. Makarov, A.V., Nanostructuring Friction Treatment of Carbon and Low-Alloy Steels, Perspective Materials. Vol. 4, Textbook, Merson, D.L., Ed., Tolyatti: TSU, 2011.

    Google Scholar 

  9. Makarov, A.V., Malygina, I.Yu., and Osintseva, A.L., Effect of Laser Treatment on the Structure, Wear Resistance, and Fatigue Properties of High-Strength Cast Ion, Fiz. Khim. Obr. Mat., 2006, no. 4, pp. 46–55.

    Google Scholar 

  10. Makarov, A.V., Savrai, R.A., Malygina, I.Yu., and Pozdejeva, N.A., Effect of Hardening Frictional Treatment on Mechanical Properties and Deformation Features under Static and Cyclic Loading of Low-Carbon Steel, Fiz. Khim. Obr. Mat., 2009, no. 1, pp. 92–102.

    Google Scholar 

  11. Makarov, A.V., Savrai, R.A., Pozdejeva, N.A., Smirnov, S.V., Vichuzhanin, D.I., Korshunov, L.G., and Malygina, I.Yu., Effect of Hardening Friction Treatment with Hard-Alloy Indenter on Microstructure, Mechanical Properties, and Deformation and Fracture Features of Constructional Steel under Static and Cyclic Tension, Surf. Coat. Technol., 2010, vol. 205, no. 3, pp. 841–852.

    Article  Google Scholar 

  12. Makarov, A.V., Pozdejeva, N.A., Savrai, R.A., Yurovskikh, A.S., and Malygina, I.Yu., Effect of the Frictional and Combined Strain-Heat Treatments on Tribological and Mechanical Properties of Quenched Structural Steel, Izv. Samar. Nauch. Tsentra RAN, 2011, vol. 13, no. 4(3), pp. 799–804.

    Google Scholar 

  13. Hanlon, T., Kwon, Y.-N., and Suresh, S., Grain Size Effects on the Fatigue Response of Nanocrystalline Metals, Scripta Mater., 2003, vol. 49, pp. 675–680.

    Article  Google Scholar 

  14. Mughrabi, H., Höppel, H.W., and Kautz, M., Fatigue and Microstructure of Ultrafine-Grained Metals Produced by Severe Plastic Deformation, Scripta Mater., 2004, vol. 51, no. 8, pp. 807–812.

    Article  Google Scholar 

  15. Panin, A.V., Klimenov, V.A., Pochivalov, Yu.I., and Son, A.A., Effect of Surface Layer State on Plastic Flow and Strength of Low-Carbon Steel, Phys. Mesomech., 2001, vol. 4, no. 4, pp. 81–88.

    Google Scholar 

  16. Panin, A.V., Leontyeva-Smirnova, M.V., Chernov, V.M., Panin, V.E., Pochivalov, Yu.I., and Melnikova, E.A., Strength Enhancement of Structural Steel EK-181 Based on the Multilevel Approach of Physical Mesomechanics, Phys. Mesomech., 2008, vol. 11, no. 1–2, pp. 85–96.

    Article  Google Scholar 

  17. Roland, T., Retraint, D., Lu, K., and Lu, J., Enhanced Mechanical Behavior of a Nanocrystallised Stainless Steel and Its Thermal Stability, Mater. Sci. Eng. A., 2007, vol. 445446, pp. 281–288.

    Article  Google Scholar 

  18. Wang, J.T., Xu, C., Du, Z.Z., Qu, G.Z., and Langdon, T.G., Microstructure and Properties of a Low-Carbon Steel Processed by Equal-Channel Angular Pressing, Mater. Sci. Eng. A., 2005, vol.410–411, pp. 312–315.

    Article  Google Scholar 

  19. Astafurova, E.G., Zakharova, G.G., Naydenkin, E.V., Raab, G.I., and Dobatkin, S.V., Structure and Mechanical Properties of Low-Carbon Ferrite-Pearlite Steel after Severe Plastic Deformation and Subsequent High-Temperature Annealing, Phys. Mesomech., 2011, vol. 14, no. 3–4, pp. 195–203.

    Article  Google Scholar 

  20. Makarov, A.V., Gorkunov, E.S., Savrai, R.A., Kolobylin, Yu.M., Kogan, L.Kh, Pozdejeva, N.A., and Malygina, I.Yu., Magnetic and Eddy-Current Testing of Hardened Constructional Steel Subjected to Combined Strain-Thermal Treatment, Russ. J. Nondestr. Test., 2012, vol. 48, no. 12, pp. 673–685.

    Article  Google Scholar 

  21. Makarov, A.V., Korshunov, L.G., and Osintseva, A.L., Patent 2194773 RF, A Method of Treatment of Steel Parts, Byul. Izobr. Polez. Mod., 2002, no. 35.

    Google Scholar 

  22. Makarov, A.V., Korshunov, L.G., Malygina, I.Yu., and Solodova, I.L., Raising the Heat and Wear Resistances of Hardened Carbon Steels by Friction Strengthening Treatment, Met. Sci. Heat Treat., 2007, vol. 49, no. 3–4, pp. 150–156.

    Article  Google Scholar 

  23. Makarov, A.V., Korshunov, L.G., Savrai, R.A., Davydova, N.A., Malygina, I.Yu., and Chernenko, N.L., Influence of Prolonged Heating on Thermal Softening, Chemical Composition, and Evolution of the Nanocrystalline Structure Formed in Quenched High-Carbon Steel upon Friction Treatment, Phys. Met. Metallogr., 2014, vol. 115, no. 3, pp. 303–314.

    Article  ADS  Google Scholar 

  24. Kragelskii, I.V., Dobychin, M.N., and Kombalov, V.S., Foundations of Calculations for Friction and Wear, Moscow: Mashinostroenie, 1977.

    Google Scholar 

  25. Vychuzhanin, D.I., Makarov, A.V., Smirnov, S.V., Pozdeeva, N.A., and Malygina, I.Yu., Stress and Strain and Damage during Frictional Strengthening Treatment of Flat Steel Surface with a Sliding Cylindrical Indenter, J. Mach. Manuf. Reliab., 2011, vol. 40, no. 6, pp. 554–560.

    Article  Google Scholar 

  26. Makarov, A.V., Korshunov, L.G., Vykhodets, V.B., Kurennykh, T.E., and Savrai, R.A., Effect of Strengthening Friction Treatment on the Chemical Composition, Structure, and Tribological Properties of a High-Carbon Steel, Phys. Met. Metallogr., 2010, vol. 110, no. 5, pp. 507–521.

    Article  ADS  Google Scholar 

  27. Makarov, A.V., Pozdejeva, N.A., Savrai, R.A., Yurovskikh, A.S., and Malygina, I.Yu., Improvement of Wear Resistance of Quenched Structural Steel by Nanostructuring Frictional Treatment, J. Frict. W., 2012, vol. 33, no. 6, pp. 433–442.

    Article  Google Scholar 

  28. Makarov, A.V., Gorkunov, E.S., Savrai, R.A., Kolobylin, Yu.M., Kogan, L.Kh, Yurovskikh A.S., Pozdejeva, N.A., and Malygina, I.Yu., The Peculiarities of Magnetic and Eddy-Current Testing of Quenched Structural Steel Hardened by Nanostructuring Frictional Treatment, Russ. J. Nondestr. Test., 2012, vol. 48, no. 11, pp. 615–622.

    Article  Google Scholar 

  29. Korshunov, L.G., Makarov, A.V., and Chernenko, N.L., Ultrafine Structures Formed upon Friction and Their Effect on the Tribological Properties of Steels, Phys. Met. Metallogr., 2000, vol. 90, S. 1, pp. S48–S58.

    Google Scholar 

  30. Korshunov, L.G., Shabashov, V.A., Chernenko, N.L., and Pilyugin, V.P., Influence of the Stressed State of the Zone of Friction Contact on the Formation of the Structure of a Surface Layer and Tribological Properties of Steels and Alloys, Phys. Met. Metallogr., 2008, vol. 105, no. 1, pp. 64–78.

    Article  ADS  Google Scholar 

  31. Korshunov, L.G., Makarov, A.V., and Chernenko, N.L., Nanocrystalline Structures Formed upon Friction in Steels and Aloys, Their Strength and Tribological Properties, Development of Ideas of Academician Sadovskii V.D., Yekaterinburg: Kvist, 2008, pp. 218–241.

    Google Scholar 

  32. Kuznetsov, V.P., Nikonov, A.Yu., Dmitriev, A.I., Psakhie, S.G., and Makarov, A.V., Nanostructuring Mechanisms of a Surface Layer under Plastic Deformation with a Gliding Indenter. Atomic Scale Simulation, Fiz. Mezomekh., 2012, vol. 15, no. 3, pp. 59–69.

    Google Scholar 

  33. Vladimirov, V.I., Problems in Friction and Wear Physics, Wear Resistance Physics of Metallic Surfaces, Leningrad: Ioffe Institute, 1988, pp. 8–41.

    Google Scholar 

  34. Likhachev, V.A., Panin, V.E., Zasimchuk, E.S., et al., Co-operative Deformation Processes and Localization of Deformation, Kiev: Naukova Dumka, 1989.

    Google Scholar 

  35. Kuznetsov, V.P., Smolin, I.Yu., Dmitriev, A.I., Konovalov, D.A., Makarov, A.V., Kiryakov, A.E., and Yurovskikh, A.S., Finite Element Simulation of Nanostructuring Burnishing, Phys. Mesomech., 2013, vol. 16, no. 1, pp. 62–72.

    Article  Google Scholar 

  36. Gavrilyuk, V.G., Carbon Distribution in Steel, Kiev: Naukova Dumka, 1987.

    Google Scholar 

  37. Makarov, A.V. and Korshunov, L.G., Strength and Wear Resistance of Nanocrystal Structures on Friction Surfaces of Steels with Martensitic Base, Russ. Phys. J., 2004, vol. 47, no. 8, pp. 857–871.

    Article  Google Scholar 

  38. Oliver, W.C. and Pharr, J.M., An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, vol. 7, no. 6, pp. 1564–1583.

    Article  ADS  Google Scholar 

  39. Savrai, R.A., Makarov, A.V., Schastlivtsev, V.M., Tabatchikova, T.I., Yakovleva, I.L., and Egorova, L.Yu., Behavior of Pearlite of Various Morphologies during Cyclic Tension, Russ. Met. (Metally), 2010, no. 4, pp. 310–315.

    Google Scholar 

  40. Firstov, S.A., Gorban, V.F., and Pechkovskii, E.P., Automatic Indentation for Determining Limiting Values of Strength, Elastic Deformation, and Corresponding Stress of Materials, Materialovedenie, 2008, no. 8, pp. 15–21.

    Google Scholar 

  41. Cheng, Y.T. and Cheng, C.M., Relationships between Hardness, Elastic Modulus and the Work of Indentation, Appl. Phys. Lett., 1998, vol. 73, no. 5, pp. 614–618.

    Article  ADS  Google Scholar 

  42. Petrzhik, M.I., Shtanskii, D.V., and Levashov, E.A., Modern Methods of Estimation of Mechanical and Tribological Properties of Friction Surfaces, Proc. X-th Inter. Sci. Conf. on High Technologies in Russian Industry, Moscow: Tekhnomach TsNITI, 2004, pp. 311–318.

    Google Scholar 

  43. Mayrhofer, P.H., Mitterer, C., and Musil, J., Structure-Property Relationships in Single- and Dual-Phase Nanocrystalline Hard Coatings, Surf. Coat. Tech., 2003, vol. 174–175, pp. 725–731.

    Article  Google Scholar 

  44. Klesnil, M. and Lukáš, P., Fatigue of Metallic Materials. Materials Science Monographs, Vol. 71, New York: Elsevier, 1992.

    Google Scholar 

  45. Terentyev, V.F., Fatigue Strength of Metals and Alloys, Moscow: Imtermed Engineering, 2002.

    Google Scholar 

  46. Dudarev, Ye.F., Pochivalova, G.P., and Bakach, G.P., Scale Levels of Shear Stability Loss during Nucleation, Formation and Propagation of Lüders-Chernov Bands, Phys. Mesomech., 1999, vol. 2, no. 1–2, pp. 99–106.

    Google Scholar 

  47. Panin, V.E., Pleshanov, V.S., Grinyaev, Yu.V., and Kobzeva, S.A., Formation of Periodic Mesoband Structures in the Tension of Polycrystals with Long Boundaries, J. Appl. Mech. Techn. Phys., 1998, vol. 39, no. 4, pp. 605–610.

    Article  ADS  Google Scholar 

  48. Panin, V.E., Egorushkin, V.E., Panin, A.V., and Moiseenko, D.D., On the Nature of Plastic Strain Localization in Solids, Tech. Phys. Russ. J. Appl. Phys., 2007, vol. 52, no. 8, pp. 1024–1030.

    Google Scholar 

  49. Makarov, A.V., Gorkunov, E.S., Savrai, R.A., Kogan, L.Kh., Yurovskikh, A.S., Kolobylin, Yu.M., Malygina, I.Yu., and Davydova N.A., The Influence of a Combined Strain-Heat Treatment on the Features of Electromagnetic Testing of Fatigue Degradation of Quenched Constructional Steel, Russ. J. Nondestr. Test., 2013, vol. 49, no. 12, pp. 690704.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Makarov.

Additional information

Original Russian Text © A.V. Makarov, R.A. Savrai, E.S. Gorkunov, A.S. Yurovskikh, I.Yu. Malygina, N.A. Davydova, 2014, published in Fizicheskaya Mezomekhanika, 2014, Vol. 17, No. 1, pp. 5–20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, A.V., Savrai, R.A., Gorkunov, E.S. et al. Structure, mechanical characteristics, and deformation and fracture features of quenched structural steel under static and cyclic loading after combined strain-heat nanostructuring treatment. Phys Mesomech 18, 43–57 (2015). https://doi.org/10.1134/S1029959915010063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959915010063

Keywords

Navigation