Skip to main content
Log in

Shakedown and induced microslip of an oscillating frictional contact

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

Using the method of reduction of dimensionality, we calculate the microslip motion of a tangentially loaded frictional contact between an elastic sphere and a rigid base. An oscillating rotation of the sphere with a small amplitude leads to a creep motion of the rigid base. Depending on the amplitude and the tangential force, two possible scenarios may occur. For oscillation amplitudes smaller than a critical value, the rigid body shakes down in the sense that the frictional slip ceases after a limited number of rotation cycles. Otherwise, the rigid base starts to slip with a constant mean velocity, which depends on the static displacement and the rotational amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.T. McCarthy, M.A. McCarthy, W.F. Stanley and V.P. Lawlor, Experiences with modeling friction in composite bolted joints, J. Composite Mater., 39 (2005) 1881.

    Article  ADS  Google Scholar 

  2. K. Chung and K.H. Ip, Finite element modeling of bolted connections between cold-formed steel strips and hot rolled steel plates under static shear loading, Eng. Struct., 22 (2000) 1271.

    Article  Google Scholar 

  3. S.S. Law, Z.M. Wu, and S.L. Chan, Analytical model of a slotted bolted connection element and its behavior under dynamic load, J. Sound Vibration, 292 (2006) 777.

    Article  ADS  Google Scholar 

  4. J.D. Booker, C.E. Truman, S. Wittig, and Z. Mohammed, A Comparison of Shrink-Fit Holding Torque Using Probabilistic, Micromechanical and Experimental Approaches, in Proc. Inst. Mech. Engineers, Part B: J. Eng. Manufacture, 218 (2004) 175.

    Article  Google Scholar 

  5. B. Li, S.N. Melkote, and S.Y. Liang, Analysis of reactions and minimum clamping force for machining fixtures with large contact areas, Int. J. Adv. Manuf. Technol., 16 (2000) 79.

    Article  Google Scholar 

  6. M.Z. Huq and J. Celis, Fretting fatigue in alumina tested under oscillating normal load, J. Amer. Ceramic Soc, 85 (2002) 986.

    Article  Google Scholar 

  7. D. Nowell, D. Dini, and D. Hills, Recent developments in the understanding of fretting fatigue, Eng. Fract. Mech., 73 (2006) 207.

    Article  Google Scholar 

  8. C.J. Hartwigsen, Y. Song, D.M. McFarland, L.A. Bergman, and A.F. Vakakis, Experimental study of n non-linear effects in a typical shear lap joint configuration, J. Sound Vibration, 277 (2004) 327.

    Article  ADS  Google Scholar 

  9. A. Klarbring, M. Ciavarella, and J.R. Barber, Shakedown in elastic contact problems with Coulomb friction, Int. J. Solids Struct., 44 (2007) 8355.

    Article  MATH  Google Scholar 

  10. J.R. Barber, A. Klarbring, and M. Ciavarella, Shakedown in frictional contact problems for the continuum, Comptes Rendus Mécanique, 336 (2008) 34.

    Article  ADS  MATH  Google Scholar 

  11. V.L. Popov and S.G. Psakhie, Numerical simulation methods in tri-bology, Tribol. Int., 40 (2007) 916.

    Article  Google Scholar 

  12. V.L. Popov, Contact Mechanics and Friction. Physical Principles and Applications, Springer, Berlin, 2010.

    Book  MATH  Google Scholar 

  13. T. Geike and V.L. Popov, Mapping of three-dimensional contact problems into one dimension, Phys. Rev. E, 76 (2007) 036710.

    Article  ADS  Google Scholar 

  14. V.L. Popov, Basic ideas and applications of the method of reduction of dimensionality in contact mechanics, Phys. Mesomech., 15, No. 5–6 (2012) 254.

    Article  Google Scholar 

  15. M. Heß, Über die Abbildung ausgewählter dreidimensionaler Kontakte auf Systeme mitniedrigerer räumlicher Dimension, Cuvillier-Verlag, Göttingen, 2011.

    Google Scholar 

  16. V.L. Popov and A.E. Filippoy, Force of friction between fractal rough surface and elastomer, Tech. Phys. Lett., 36, No. 9 (2010) 525.

    Article  ADS  Google Scholar 

  17. V.L. Popov and A. Dimaki, Using hierarchical memory to calculate friction force between fractal rough solid surface and elastomer with arbitrary linear rheological properties, Tech. Phys. Lett., 37, (2011) 8.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robbin Wetter.

Additional information

Original Text © R. Wetter, 2012, published in Fiz. Mezomekh., 2012, Vol. 15, No. 4, pp. 51–57.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wetter, R. Shakedown and induced microslip of an oscillating frictional contact. Phys Mesomech 15, 293–299 (2012). https://doi.org/10.1134/S1029959912030083

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959912030083

Keywords

Navigation