Skip to main content
Log in

Control of Detonation Combustion of a Hydrogen–Air Mixture by Argon and Ozone Addition

  • MECHANICS
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

In this paper, the effect of argon and ozone addition to a stoichiometric hydrogen–air mixture on the parameters of the detonation wave is studied numerically in order to reduce the wave propagation velocity and the temperature of combustion products without significantly increasing the detonation cell, which is a fundamental characteristic of the detonation capacity of the mixture. It is found that the molar fractions of the introduced additives can be selected so that the cell size of the detonation wave in the resulting mixture will be close to the average cell size in the pure mixture while the wave velocity and temperature of the detonation products will be significantly reduced. A detonation wave in a mixture with additives at concentrations that do not allow a significant increase in the cell size is found to be more resistant to disturbances caused by obstacles located in the channel than that in a pure mixture. This study is performed using a second-order scheme based on Godunov’s method; a detailed kinetic mechanism is used to simulate chemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. V. A. Levin and T. A. Zhuravskaya, Tech. Phys. Lett. 46, 189 (2020). https://doi.org/10.1134/S1063785020020248

    Article  ADS  Google Scholar 

  2. T. A. Zhuravskaya and V. A. Levin, Fluid Dyn. 55, 488 (2020). https://doi.org/10.1134/S0015462820040138

    Article  ADS  Google Scholar 

  3. V. A. Levin and T. A. Zhuravskaya, Proc. Steklov Inst. Math. 300, 114 (2018). https://doi.org/10.1134/S0081543818010091

  4. V. A. Levin and T. A. Zhuravskaya, Combust. Sci. Technol. (2019). https://doi.org/10.1080/00102202.2018.1557641

  5. J. Crane, X. Shi, A. V. Singh, Y. Tao, and H. Wang, Combust. Flame 200, 44 (2019). https://doi.org/10.1016/j.combustflame.2018.11.008

    Article  Google Scholar 

  6. D. S. Kumar, K. Ivin, and A. V. Singh, Proc. Combust. Inst. 38, 3825 (2021). https://doi.org/10.1016/j.proci.2020.08.061

    Article  Google Scholar 

  7. Thermodynamical Properties of Individual Substances, Ed. by V. P. Glushko (Nauka, Moscow, 1978), Vol. 1, Part 2 [in Russian].

    Google Scholar 

  8. L. V. Bezgin, V. I. Kopchenov, A. S. Sharipov, N. S. Titova, and A. M. Starik, Combust. Sci. Technol. 185, 62 (2013). https://doi.org/10.1080/00102202.2012.709562

    Article  Google Scholar 

  9. A. V. Rodionov, USSR Comput. Math. Math. Phys. 27, 175 (1987). https://doi.org/10.1016/0041-5553(87)90174-1

  10. Vl. Voevodin, A. Antonov, D. Nikitenko, P. Shvets, S.  Sobolev, I. Sidorov, K. Stefanov, Vad. Voevodin, and S. Zhumatiy, Supercomput. Front. Innov. 6 (2), 4 (2019). https://doi.org/10.14529/jsfi190201

    Article  Google Scholar 

  11. F. Pintgen, C. A. Eckett, J. M. Austin, and J. E. Shepherd, Combust. Flame 133, 211 (2003). https://doi.org/10.1016/S0010-2180(02)00458-3

    Article  Google Scholar 

  12. G. Yu. Bivol, S. V. Golovastov, and V. V. Golub, Shock Waves 28, 1011 (2018). https://doi.org/10.1007/s00193-018-0831-3

    Article  ADS  Google Scholar 

  13. O. V. Sharypov and Ye. A. Pirogov, Combust. Explos. Shock Waves 31, 466 (1995). https://doi.org/10.1007/BF00789368

  14. A. Teodorczyk and J. H. S. Lee, Shock Waves 4, 225 (1995). https://doi.org/10.1007/BF01414988

    Article  ADS  Google Scholar 

  15. M. I. Radulescu and J. H. S. Lee, Combust. Flame 131, 29 (2002). https://doi.org/10.1016/S0010-2180(02)00390-5

    Article  Google Scholar 

  16. T. A. Zhuravskaya, Fluid Dyn. 42, 987 (2007). https://doi.org/10.1134/S0015462807060142

    Article  ADS  Google Scholar 

  17. H. Qin, J. H. S. Lee, Z. Wang, and F. Zhuang, Proc. Combust. Inst. 35, 1973 (2015). https://doi.org/10.1016/j.proci.2014.07.056

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, agreement no. 075-15-2020-806, dated September 29, 2020.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Levin or T. A. Zhuravskaya.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levin, V.A., Zhuravskaya, T.A. Control of Detonation Combustion of a Hydrogen–Air Mixture by Argon and Ozone Addition. Dokl. Phys. 66, 320–324 (2021). https://doi.org/10.1134/S1028335821110057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335821110057

Keywords:

Navigation