Skip to main content
Log in

Determination of Radicals Energy Levels in the Bandgap of Nanocrystalline Oxides of Titanium, Molybdenum, and Vanadium Using EPR Spectroscopy

  • PHYSICS
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

A new method for constructing energy band diagrams based on EPR spectroscopy data is proposed and applied to study nitrogen-doped nanocrystalline oxides of titanium, molybdenum, and vanadium (TiO2, MoO3, V2O5) with a specific surface area of about 100 m2/g and an average nanoparticle size of 10–15 nm. Nitrogen N radicals and Ti3+ centers were detected in TiO2, N, NO centers and Mo5+ ions in MoO3, and V4+ centers in V2O5. The defect concentrations were 6.5 × 1017, 9.8 × 1016, and 2 × 1017 g–1, respectively. The position of the radical energy levels in the forbidden band is determined using the EPR method. The unique properties of TiO2 with a high concentration of radicals and a photocatalysis rate can be used to create energy-efficient photocatalytic devices operating in the visible range of the spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. R. Hoffmann, S. T. Martin, W. Choi, et al., Chem. Rev. 95, 69 (1995).

    Article  Google Scholar 

  2. J. C. S. Wu and C. H. Chen, J. Photochem. Photobiol., A 163, 509 (2004).

    Article  Google Scholar 

  3. W. Zhao, S. Liu, S. Zhang, et al., Catal. Today 337, 37 (2019).

    Article  Google Scholar 

  4. M. Chiesa, S. Livraghi, M. C. Paganini, et al., Chem. Sci. 11, 6623 (2020).

    Article  Google Scholar 

  5. E. A. Konstantinova, M. P. Kushnikov, V. B. Zaitsev, V. G. Kytin, A. V. Marikutsa, G. V. Trusov, A. S. Sedegov and P. K. Kashkarov, Nanotechnol. Russ. 14, 190 (2019).

    Article  Google Scholar 

  6. A. Tarasov, G. Trusov, A. Minnekhanov, et al., J. Mater. Chem. A 2, 3102 (2014).

    Article  Google Scholar 

  7. A. Tarasov, Zhi-Yi. Hu, M. Meledina, et al., J. Phys. Chem. C 121, 4443 (2017).

    Article  Google Scholar 

  8. H. Tang, F. Levy, H. Berger, et al., Phys. Rev. B 52, 7771 (1995).

    Article  ADS  Google Scholar 

  9. A. Zaleska-Medynska, Metal Oxide-Based Photocatalysis (Elsevier, Amsterdam, 2020).

    Google Scholar 

  10. E. V. Kytina, E. A. Nazarova, and E. R. Parkhomenko, in Proceedings of the 2nd All-Russia Conference on Quantum Materials and Technologies on Nanometer Scale (IOF RAN, Moscow, 2020), p. 49.

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 18-29-23051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Konstantinova.

Additional information

Translated by V. Alekseev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kytina, E.V., Parkhomenko, E.R., Nazarova, E.A. et al. Determination of Radicals Energy Levels in the Bandgap of Nanocrystalline Oxides of Titanium, Molybdenum, and Vanadium Using EPR Spectroscopy. Dokl. Phys. 66, 191–194 (2021). https://doi.org/10.1134/S102833582107003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102833582107003X

Keywords:

Navigation