Skip to main content
Log in

Prediction of band edge potentials and reaction products in photocatalytic copper and iron sulfides

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The prediction of band edge potentials in photocatalytic materials is an important but challenging task. In contrast, bandgaps can be easily determined through absorption spectra. Here, we present two simple theoretical approaches for the determination of band edge potentials which are based on the electron negativity and work function of each constituent atom. We use these approaches to determine band edge potentials in semiconducting metallic oxides and sulfides, such as titanium dioxide (TiO2), chalcopyrite (CuFeS2), pyrite (FeS2), covellite (CuS), and chalcocite (Cu2S) with respect to an absolute scale (eV) and an electrochemical scale (V). Until now, there is little information on iron and copper sulfides referring to these thermodynamic parameters. TiO2 (Titania p25) was used as reference semiconductor to validate the calculation procedures using experimental values by X-ray diffraction analysis (XRD), diffuse reflectance spectrometry (DRS), and electron paramagnetic resonance spectroscopy (EPR). The production of key chemical species such as reactive oxygen species (ROS) and reactive sulfur species (RSS) has been theoretically and experimentally determined by EPR.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Ref. [9] with permission

Fig. 2
Fig. 3

Adapted from Ref. [34] with permission

Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Sun, X., Li, S., Cao, J., et al. (2021). A hierarchical-structured impeller with engineered pd nanoparticles catalyzing Suzuki coupling reactions for high-purity biphenyl. ACS Applied Materials & Interfaces, 13, 17429–17438.

    Article  CAS  Google Scholar 

  2. Zhong, S., Xi, Y., Wu, S., et al. (2020). Hybrid cocatalysts in semiconductor-based photocatalysis and photoelectrocatalysis. J Mater Chem A, 8, 14863–14894.

    Article  CAS  Google Scholar 

  3. Liu, W., Lustig, W. P., & Li, J. (2019). Luminescent inorganic-organic hybrid semiconductor materials for energy-saving lighting applications. EnergyChem, 1, 100008.

    Article  Google Scholar 

  4. Sansom, H. C., Longo, G., Wright, A. D., et al. (2021). Highly absorbing lead-free semiconductor Cu2AgBiI6 for photovoltaic applications from the quaternary CuI–AgI–BiI3 phase space. Journal of the American Chemical Society, 143, 3983–3992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Niu, J., Albero, J., Atienzar, P., & García, H. (2020). Porous single crystal based inorganic semiconductor photocatalysts for energy production and environmental remediation: Preparation, modification, and Applications. Advanced Functional Materials, 30, 1908984.

    Article  CAS  Google Scholar 

  6. Umar, A., Ammar, H. Y., Kumar, R., et al. (2020). Square disks-based crossed architectures of SnO2 for ethanol gas sensing applications—An experimental and theoretical investigation. Sensors Actuators B Chem, 304, 127352.

    Article  CAS  Google Scholar 

  7. Águila, J. E. C., Palacios, P., Arriaga, J., & Wahnón, P. (2017). Band alignment of polar and non-polar interfaces between the CuGaS2/CuAlSe2 and CuGaS2/ZnSe. Current Trends in Energy and Sustainability, 2017, 61.

    Google Scholar 

  8. Wang, Y., Zhang, R., Li, J., et al. (2014). First-principles study on transition metal-doped anatase TiO2. Nanoscale Research Letters, 9, 1–8.

    Google Scholar 

  9. Wang, T., Liu, Y., Fang, Q., et al. (2011). Morphology and optical properties of Co doped ZnO textured thin films. Journal of Alloys and Compounds, 509, 9116–9122.

    Article  CAS  Google Scholar 

  10. Frese, K. W., Jr. (1979). Simple method for estimating energy levels of solids. Journal of Vacuum Science and Technology, 16, 1042–1044.

    Article  CAS  Google Scholar 

  11. Morrison, S. R. (1980). Electrochemistry at semiconductor and oxidized metal electrodes.

  12. Brus, L. E. (1984). Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. The Journal of Chemical Physics, 80, 4403–4409.

    Article  CAS  Google Scholar 

  13. LeBlanc, S. E., & Fogler, H. S. (1986). The role of conduction/valence bands and redox potential in accelerated mineral dissolution. AIChE Journal, 32, 1702–1709.

    Article  CAS  Google Scholar 

  14. Kar, P., Farsinezhad, S., Zhang, X., & Shankar, K. (2014). Anodic Cu2S and CuS nanorod and nanowall arrays: Preparation, properties and application in CO2 photoreduction. Nanoscale, 6, 14305–14318.

    Article  CAS  PubMed  Google Scholar 

  15. Zanatta, A. R. (2019). Revisiting the optical bandgap of semiconductors and the proposal of a unified methodology to its determination. Science and Reports, 9, 11225.

    Article  CAS  Google Scholar 

  16. Shao, Q., Lin, H., & Shao, M. (2020). Determining locations of conduction bands and valence bands of semiconductor nanoparticles based on their band gaps. ACS Omega, 5, 10297–10300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shen, S., & Wang, Q. (2013). Rational tuning the optical properties of metal sulfide nanocrystals and their applications. Chemistry of Materials, 25, 1166–1178.

    Article  CAS  Google Scholar 

  18. Suresh, R., Sandoval, C., Ramirez, E., et al. (2021). Electrochemical sensors based on metal oxide and sulfide nanostructures BT—Metal, metal-oxides and metal sulfides for batteries, fuel cells, solar cells, photocatalysis and health sensors. In H. Karimi-Maleh, J. Qin, & E. Lichtfouse (Eds.), Rajendran S (pp. 285–309). Springer International Publishing.

    Google Scholar 

  19. Suresh, R., Mangalaraja, R. V., Mansilla, H. D., et al. (2020). Reduced graphene oxide-based photocatalysis BT—Green photocatalysts. In S. Rajendran & E. Lichtfouse (Eds.), Naushad M (pp. 145–166). Springer International Publishing.

    Google Scholar 

  20. Xu, Y., & Schoonen, M. A. A. (2000). The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist, 85, 543–556.

    Article  CAS  Google Scholar 

  21. Butler, M. A., & Ginley, D. S. (1978). Prediction of flatband potentials at semiconductor-electrolyte interfaces from atomic electronegativities. Journal of the Electrochemical Society, 125, 228.

    Article  CAS  Google Scholar 

  22. Mousavi, M., Habibi-Yangjeh, A., & Abitorabi, M. (2016). Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation. Journal of Colloid and Interface Science, 480, 218–231.

    Article  CAS  PubMed  Google Scholar 

  23. Yu, Y., Click, K. A., Chien, S.-C., et al. (2019). Decoupling pH dependence of flat band potential in aqueous dye-sensitized electrodes. Journal of Physical Chemistry C, 123, 8681–8687.

    Article  CAS  Google Scholar 

  24. Michaelson, H. B. (1977). The work function of the elements and its periodicity. Journal of Applied Physics, 48, 4729–4733.

    Article  CAS  Google Scholar 

  25. Yepsen, O., Yáñez, J., & Mansilla, H. D. (2018). Photocorrosion of copper sulfides: Toward a solar mining industry. Solar Energy, 171, 106–111.

    Article  CAS  Google Scholar 

  26. Javadi Nooshabadi, A., Larsson, A.-C., & Kota, H. R. (2013). Formation of hydrogen peroxide by pyrite and its influence on flotation. Minerals Engineering, 49, 128–134.

    Article  CAS  Google Scholar 

  27. Nogueira, R. F. P., Oliveira, M. C., & Paterlini, W. C. (2005). Simple and fast spectrophotometric determination of H2O2 in photo-Fenton reactions using metavanadate. Talanta, 66, 86–91.

    Article  CAS  PubMed  Google Scholar 

  28. Gil-Lozano, C., Davila, A. F., Losa-Adams, E., et al. (2017). Quantifying Fenton reaction pathways driven by self-generated H2O2 on pyrite surfaces. Science and Reports, 7, 1–11.

    Google Scholar 

  29. Peressi, M., Binggeli, N., & Baldereschi, A. (1998). Band engineering at interfaces: Theory and numerical experiments. Journal of Physics. D. Applied Physics, 31, 1273.

    Article  CAS  Google Scholar 

  30. Troupis, A., Hiskia, A., & Papaconstantinou, E. (2002). Photocatalytic reduction and recovery of copper by polyoxometalates. Environmental Science and Technology, 36, 5355–5362.

    Article  CAS  PubMed  Google Scholar 

  31. Yepsen, O., Araneda, E., Yepsen, R., & Estay, H. (2021). The role of solar energy (UV–VIS–NIR) as an assistant for sulfide minerals leaching and its potential application for metal extraction. Minerals, 11, 828.

    Article  CAS  Google Scholar 

  32. Zeng, X., Liu, Y., Kang, Y., et al. (2020). Simultaneously tuning charge separation and oxygen reduction pathway on graphitic carbon nitride by polyethylenimine for boosted photocatalytic hydrogen peroxide production. ACS Catalysis, 10, 3697–3706.

    Article  CAS  Google Scholar 

  33. Chen, L., Wang, L., Wan, Y., et al. (2020). Acetylene and diacetylene functionalized covalent triazine frameworks as metal-free photocatalysts for hydrogen peroxide production: A new two-electron water oxidation pathway. Advanced Materials, 32, 1904433.

    Article  CAS  Google Scholar 

  34. Gupta, S. M., & Tripathi, M. (2012). An overview of commonly used semiconductor nanoparticles in photocatalysis. High Energy Chemistry, 46, 1–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research and Development Agency of Chile (ANID) by the projects FONDECYT 1191572, FONDECYT Postdoctoral 3200850, FONDECYT Postdoctoral 3190383, and ANID/FONDAP/15110019. J. P. Fuentes thanks ANID for the Ph.D. scholarship N° 21181880.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Yáñez.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 272 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuentes, J.P., Jadoun, S., Yepsen, O. et al. Prediction of band edge potentials and reaction products in photocatalytic copper and iron sulfides. Photochem Photobiol Sci 22, 1855–1864 (2023). https://doi.org/10.1007/s43630-023-00415-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00415-3

Keywords

Navigation