Skip to main content
Log in

The Spectrum of Decaying 2D Self-Similar Turbulence

  • MECHANICS
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

A decaying 2D homogeneous and isotropic turbulent flow is considered in the self-similar limit, which is achieved with large values of the Reynolds number formed using the time and kinetic energy of the flow if the initial value of the averaged enstrophy tends to infinity with the viscosity tending to zero. In this case, the enstrophy-dissipation rate has a nonzero finite limit. The correlation function of the vorticity field and the enstrophy spectral density in the inertial range of distances and wave numbers, where these functions are free from the effect of viscosity and large-scale flow parameters, is investigated. It turns out that the inertial range exists in the decaying 2D self-similar turbulence in physical space but is absent in the space of wavenumbers. This means that the turbulent vortices of the appropriate size do not contribute to the spectral density, and the well-known law of the first degree is not satisfied. At large wave numbers, the spectral density of enstrophy behaves nonmonotonically—it first decreases faster than the law of the minus first degree and, then, in the dissipation region, it has a growth segment and a second peak. In this case, the enstrophy flow along the spectrum on the left boundary of the dissipation region is only a fraction of the enstrophy-dissipation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. G. K. Batchelor, Phys. Fluids Suppl. II 12, 233 (1969).

    Article  Google Scholar 

  2. G. L. Eyink, Nonlinearity 14 (4), 787 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  3. P. Dmitruk and D. C. Montgomery, Phys. Fluids 17, 035114 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  4. D. G. Dritschel, C. V. Tran, and R. K. Scott, J. Fluid Mech. 591, 379 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Fox and P. A. Davidson, J. Fluid Mech. 659, 351 (2010).

    Article  ADS  Google Scholar 

  6. E. Lindborg and A. Vallgren, Phys. Fluids 22, 091704 (2010).

    Article  ADS  Google Scholar 

  7. J. C. McWilliams, J. Fluid Mech. 146, 21 (1984).

    Article  ADS  Google Scholar 

  8. R. Benzi, S. Patarnello, and P. Santangelo, J. Phys. A 21 (5), 1221 (1988).

    Article  ADS  Google Scholar 

  9. J. R. Chasnov, Phys. Fluids 9, 171 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Bracco, J. C. McWilliams, G. Murante, A. Provenzale, and J. B. Weiss, Phys. Fluids 12 (11), 2931 (2000).

    Article  ADS  Google Scholar 

  11. D. G. Dritschel, R. K. Scott, C. Macaskill, G. A. Gottwald, and C. V. Tran, Phys. Rev. Lett. 101, 094501 (2008).

    Article  ADS  Google Scholar 

  12. P. A. Davidson, Turbulence in Rotating Stratified and Electrically Conducting Fluids (Cambridge Univ. Press, Cambridge, 2013).

    Book  MATH  Google Scholar 

  13. E. Lindborg, J. Fluid Mech. 388, 259 (1999).

    Article  ADS  Google Scholar 

  14. R. F. MacKinnon, Math. Comput. 26, 515 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Vigdorovich.

Additional information

Translated by V. Bukhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vigdorovich, I.I. The Spectrum of Decaying 2D Self-Similar Turbulence. Dokl. Phys. 64, 176–180 (2019). https://doi.org/10.1134/S1028335819040086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335819040086

Navigation