Skip to main content
Log in

The Decay of Isotropic Turbulence Preserving a General Type of Self Similarity

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we have investigated the decay process of the kinetic energy density spectrum in a homogeneous isotropic turbulence. It has been shown that the spectral equation for the energy density spectrum E(k) with modified form of energy transfer spectrum due to Obukhov (Compt. Rend. Acad. Sci. U. R. S. S 32:22–24, 1941) and as restricted to early-period decay process, admits of a class of self-preserving solution. Such solutions are identified by their asymptotic behaviour e.g, \(E(k) \sim k^{\frac{2-3c}{c}} ( k \rightarrow 0)\) where \(c( < \frac{2}{3})\) is a parameter and \(E(k) \sim k^{-\frac{5}{3}} ( k \rightarrow \infty )\). Numerical computations of some selective spectra, corresponding to values of c e.g., \(c=\frac{1}{2}, \frac{2}{5}, \frac{1}{3}\) and \(\frac{2}{7}\) are then accomplished over the entire range of wave numbers concerned (excluding the viscous dissipation range). We attempt to find a class of non viscous self-preserving solution using the modified Obukhov form (cf Hinze An introduction to its mechanism and theory, 1975) for the spectrum function F(kt) and compute them numerically. Finally, stability analysis is carried out for the above mentioned self-preserving spectra and it is shown that they represent different degrees of unstable situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Obukhoff, A.M.: Spectral energy distribution in a turbulent flow. Compt. Rend. Acad. Sci U. R. S. S. 32, 22–24 (1941)

    MathSciNet  MATH  Google Scholar 

  2. Hinze, J.O.: An Introduction to its Mechanism and Theory. McGraw-Hill, New York (1975)

    Google Scholar 

  3. Taylor, G.I.: Statistical theory of turbulence. In: Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 151, pp. 421–444 (1935)

  4. Robertson, H.P.: The invariant theory of isotropic turbulence. Proc. Camb. Philos. Soc. 36, 209–223 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  5. Stanisic, M.M.: The Mathematical Theory of Turbulence. Springer, New York (1985)

    Book  MATH  Google Scholar 

  6. Kovasznay, L.S.G.: Spectrum of locally isotropic turbulence. J. Aeronaut. Sci. 15, 745–753 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  7. Heisenberg, W.: On the theory of statistical and isotropic turbulence. Proc. R. Soc. Lond. A–195, 402–406 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  8. Von karman, T., howarth, L.: On the statistical theory of isotropic turbulence. Proc. R. Soc. Lond. A –164, 192–215 (1938)

    Article  MATH  Google Scholar 

  9. kraichnan, R.H., Spiegel, E.A.: Model for energy transfer in isotropic turbulence. Phys. Fluids 5, 583–588 (1962)

    Article  Google Scholar 

  10. Leith, C.E.: Diffusion approximation to inertial energy transfer in isotropic turbulence. Phys. Fluids 10, 1409–1416 (1967)

    Article  Google Scholar 

  11. Chandrasekhar, S.: On Heisenberg’s elementary theory of turbulence. Proc. R. Soc. A 200, 20–33 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  12. Proudman, I.: A comparison of Heisenberge’s spectrum of turbulence with experiment. Porc. Camb. Philos. Soc. 1, 158–176 (1950)

    MATH  Google Scholar 

  13. Blanch, G., Ferguson, H.: Remarks on Chandrasekhar’s results relating to Heisenberg’s theory of turbulence. Phys. Fluids 2, 79–84 (1959)

    Article  MATH  Google Scholar 

  14. Mazumdar, H.P.: Some aspects of Heisenberg spectrum of homogeneous and isotropic turbulence. Rev. Roum. Sci. Techn-Mec. Appl. Tome 22, 863–869 (1977)

    MathSciNet  MATH  Google Scholar 

  15. saffman, P.G.: The large scale structure of homogeneous turbulence. J. Fluids Mech. 27(3), 581–593 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sen, N.R.: The Modern Therory of Turbulence. Indian Association for the Cultivation of Science, Kolkata (1956)

    Google Scholar 

  17. Brevik, I.: Velocity correlation in isotropic turbulence according to a modified Obukhov theory. J. Appl. Math. Mech. 72, 145–148 (1992)

    MATH  Google Scholar 

  18. Panchev, S.: Random Function and Turbulence. Pergamon Press, Oxford (1971)

    MATH  Google Scholar 

  19. Ellison, T.H.: Laboratory measurements of turbulent diffusion in stratified flows. J. Geophys. Res. 67, 3029–3031 (1962)

    Article  Google Scholar 

  20. Ghosh, K.M.: Numerical solutiont to find the spectrum function of isotropic turbulence with fourth order power law fitting at small wave numbers. Bull Cal. Math. Soc. 47, 71–75 (1955)

    MATH  Google Scholar 

  21. Stewart, R.W., Townsend, A.A.: Similarity and self-preservation in isotropic turbulence. Philos. Trans. A 243, 359–386 (1951)

    Article  MATH  Google Scholar 

  22. Batchelor, G.K.: Energy decay and self -preserving correlation functions in isotropic turbulence. Q. Appl. Math. 6, 97–116 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sen, N.R.: On Heisenberg spectrum of turbulence. Bull. Cal. Math. Soc. 43, 1–7 (1951)

    MathSciNet  MATH  Google Scholar 

  24. Lin, C.C.: Remarks on spectrum of turbulence. In: Frist Symposium of Applied Mathematics. A, M. S (1947)

Download references

Acknowledgments

We are greatful reviewer for critical comments which help us to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarup Poria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazumdar, H.P., Ghorai, S. & Poria, S. The Decay of Isotropic Turbulence Preserving a General Type of Self Similarity. Int. J. Appl. Comput. Math 3, 15–26 (2017). https://doi.org/10.1007/s40819-015-0086-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-015-0086-y

Keywords

Navigation