Skip to main content
Log in

Using the Ab Initio Molecular Dynamics Method for Simulating the Peculiarities in the Temperature Dependence of Liquid Bismuth Properties

  • Technical Physics
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

The specific features pertinent to the temperature dependence of the electronic and atomic properties of liquid bismuth that have been observed in experiments are investigated according to the ab initio molecular dynamics method using the SIESTA open software package. The density of electronic states, the radial distribution function of atoms, and the self-diffusion coefficient are calculated for the temperature range from the melting point equal to 545 K to 1500 K. The calculated data are in good agreement with the experimental data. It is found that the position of the first peak in the radial distribution function of atoms and the self-diffusion coefficient are characterized by a nonmonotonic dependence under the conditions of superheating by approximately 150 K above the melting temperature. In the authors’ opinion, this dependence feature is attributed to a change in the liquid short-range order structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Dahlborg and M. Davidovic, Phys. Chem. Liq. 15, 243 (1986).

    Article  Google Scholar 

  2. A. V. Borisenko, D. A. Yagodin, V. V. Filippov, P. S. Popel, and A. G. Mozgovoi, Rus. Metallurgy 2012 (8), 659 (2012).

    Article  ADS  Google Scholar 

  3. Y. Greenberg, E. Yahel, E. N. Caspi, C. Benmore, B. Beuneu, M. P. Dariel, and G. Makov, Lett. J. Exploring Frontiers Physics 86, 36004 (2009).

    Google Scholar 

  4. R. Car and M. Parrinello, Phys. Rev. Lett. 55 (22), 2471 (1985).

    Article  ADS  Google Scholar 

  5. J. Souto, M. M. G. Alemany, L. J. Gallego, L. E. Gonzalez, and D. J. Gonzalez, Phys. Rev. 81, 134201 (2010).

    Article  Google Scholar 

  6. J. M. Soler, E. Artacho, J. D. Gale, et al., J. Phys.: Condens. Matter 14, 2745 (2002).

    ADS  Google Scholar 

  7. http://departments.icmab.es/leem/siesta

  8. http://metalldb.uran.ru

  9. A. A. Yuryev and B. R. Gelchinski, Dokl. Phys. 60 (3), 105 (2015).

    Article  ADS  Google Scholar 

  10. A. A. Yuryev and B. R. Gelchinski, AIP Conference Proceedings 1673, 020009 (2015).

    Article  Google Scholar 

  11. Y. Waseda, The Structure of Non-crystalline Materials: Liquids and Amorphous Solids (Mc Graw-Hill, New York, 1980).

    Google Scholar 

  12. D. K. Belashchenko, Usp. Fiz. Nauk 183 (12), 1281 (2013).

    Article  Google Scholar 

  13. R. P. Chhabra and T. Sridhar, Phys. Chem. Liq. 13, 37 (1983).

    Article  Google Scholar 

  14. M. Dzugutov, Nature 381, 137 (1996).

    Article  ADS  Google Scholar 

  15. R. Hultgren, P. D. Desai, D. T. Hawkins, et al., Selected Values of the Thermodynamic Properties of the Elements (Amer. Soc. Metals, Metals Park, 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Yuryev.

Additional information

Original Russian Text © A.A. Yuryev, B.R. Gelchinski, N.A. Vatolin, 2018, published in Doklady Akademii Nauk, 2018, Vol. 479, No. 1, pp. 21–24.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuryev, A.A., Gelchinski, B.R. & Vatolin, N.A. Using the Ab Initio Molecular Dynamics Method for Simulating the Peculiarities in the Temperature Dependence of Liquid Bismuth Properties. Dokl. Phys. 63, 108–112 (2018). https://doi.org/10.1134/S1028335818030047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335818030047

Navigation