Skip to main content
Log in

An efficient method for simulation of the dynamics of a large number of deformable droplets in the stokes regime

  • Mechanics
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

Direct simulations of the interaction of a large number of deformable droplets are necessary for more accurate predictions of rheological properties and the microstructure of liquid-liquid systems. In the present study, a mathematical model of a three-dimensional flow of a mixture of two Newtonian liquids of a droplet structure in an unbounded domain at low Reynolds numbers is considered. An efficient computational method for simulation of the dynamics of a large number of deformable drops is developed and tested. This approach is based on the boundary element method for three-dimensional problems accelerated both via an advanced scalable algorithm (FMM), and via utilization of a heterogeneous computing architecture (multicore CPUs and graphics processors). This enables direct simulations of systems of tens of thousands of deformable droplets on PCs, which is confirmed by test and demo computations. The developed method can be used for solution of a wide range of problems related to the emulsion flow in micro- and nanoscales. Also it can be used to establish the closing relations for simulation of two-phase liquid-liquid flow based on the continuum approach in macroscales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. Cox, J. Fluid Mech. 37(3), 601–623 (1969).

    Article  ADS  MATH  Google Scholar 

  2. N. A. Gumerov and R. Duraiswami, J. Comput. Phys. 227, 8290–8313 (2008).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. L. Greengard and V. Rokhlin, J. Comput. Phys. 73, 325–348 (1987).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Q. Hu, N. A. Gumerov, and R. Duraiswami, in Proceedings of Supercomputing’11 (Seattle, Washington, 2011).

    Google Scholar 

  5. M. R. Kennedy, C. Pozrikidis, and R. Skalak, Computers Fluids 23(2), 251–278 (1994).

    Article  MATH  Google Scholar 

  6. M. Loewenberg and E. J. Hinch, J. Fluid Mech. 321, 395–419 (1996).

    Article  ADS  MATH  Google Scholar 

  7. C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge University Press, Cambridge, MA, 1996), p. 259.

    Google Scholar 

  8. J. M. Rallison and A. Acrivos, J. Fluid Mech. 89(1), 191–200 (1978).

    Article  ADS  MATH  Google Scholar 

  9. Y. Saad, Iterative Methods for Sparse Linear System (SIAM, 2000), p. 447.

    Google Scholar 

  10. A. S. Sangani and G. Mo, Phys. Fluids. 8(8), 1990–2010 (1996).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. A. K. Tornberg and L. Greengard, J. Comput. Phys. 227(3), 1613–1619 (2008).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. H. Wang, T. Lei, J. Li, J. Huang, and Z. Yao, Int. J. Num. Meth. Engng. 70, 812–839 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Z. Zinchenko and R. H. Davis, J. Comp. Phys. 207, 695–735 (2005).

    Article  ADS  MATH  Google Scholar 

  14. A. Z. Zinchenko, M. A. Rother, and R. H. Davis, Phys. Fluids. 9(6), 1493–1511 (1997).

    Article  ADS  Google Scholar 

  15. A. Z. Zinchenko and R. H. Davis, Phil. Trans. R. Soc. Lond. A 361, 813–845 (2003).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga A. Abramova.

Additional information

Original Russian Text © Olga A. Abramova, Yulia A. Itkulova, Nail A. Gumerov, Iskander Sh. Akhatov, 2014, published in Doklady Akademii Nauk, 2014, Vol. 456, No. 2, pp. 166–170.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramova, O.A., Itkulova, Y.A., Gumerov, N.A. et al. An efficient method for simulation of the dynamics of a large number of deformable droplets in the stokes regime. Dokl. Phys. 59, 236–240 (2014). https://doi.org/10.1134/S102833581405005X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102833581405005X

Keywords

Navigation