Skip to main content
Log in

Solution of the thermoelastoplastic problem for a thin disk of plastically compressible material subjected to thermal loading

  • Mechanics
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

Elastoplastic solutions for thin plates and disks are sensitive to loading and plasticity conditions [1–5]. The plasticity condition for a number of metal materials depends on the mean stress [6–8]. In this case, when using the associated flow rule, plastic deformations do not satisfy the incompressibility condition, which is commonly accepted in statements of boundary-value problems for thin elastoplastic plates and disks [9–13]. It is of interest to determine the effect of plastic compressibility on the behavior of solutions for such structures. In this paper, a hollow disk in a rigid container subjected to a uniform temperature field is considered. The plasticity condition proposed in [14] is accepted. A general study of the set of equations including this plasticity condition and the associated flow rule was performed in [15]. The solution under the Mises plasticity condition was obtained in [1].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Alexandrov and N. Alexandrova, J. Strain Anal. Engng. Des. 36, 169 (2001).

    Article  Google Scholar 

  2. N. Alexandrova and S. Alexandrov, Trans. ASME J. Appl. Mech. 71, 427 (2004).

    Article  ADS  MATH  Google Scholar 

  3. N. Alexandrova and S. Alexandrov, Mech. Based Des. Struct. Mach. 32, 1 (2004).

    Article  Google Scholar 

  4. N. Alexandrova, S. Alexandrov, and Real P. Vila, Mech. Based Des. Struct. Mach. 32, 441 (2004).

    Article  Google Scholar 

  5. S. E. Aleksandrov, E V. Lomakin, and I.-R. Dzeng, Dokl. Akad. Nauk 435, 610 (2010) [Dokl. Phys. 55, 606 (2010)].

    Google Scholar 

  6. W. A. Spitzig, R. J. Sober, and O. Richmond, Metallurg. Trans. 7A, 1703 (1976).

    Article  ADS  Google Scholar 

  7. E. V. Lomakin, Izv. AN SSSR. MTT, No. 4, 92 (1980).

  8. C. D. Wilson, Trans. ASME J. Appl. Mech. 69, 63 (2002).

    Article  ADS  MATH  Google Scholar 

  9. J. Chakrabarty, Intern Mech. Sci. 13, 439 (1971).

    Article  MATH  Google Scholar 

  10. W. Mack, Arch. Appl. Mech. 63, 42 (1993).

    Article  ADS  MATH  Google Scholar 

  11. U. Guven, Intern. Mech. Sci. 35, 39 (1993).

    Article  Google Scholar 

  12. A. N. Eraslan, Ztschr. Angew. Math. Mech. 85, 252 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Masri, T. Cohen, and D. Durban, Quart. J. Mech. Appl. Math. 63, 589 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  14. D. C. Drucker and W. Prager, J. Appl. Math. 10, 157 (1952).

    MathSciNet  MATH  Google Scholar 

  15. B. A. Druyanov, Applied Theory of Plasticity of Porous Solids (Mashinostroenie, Moscow, 1989) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.E. Aleksandrov, E.V. Lomakin, I.-R. Dzeng, 2012, published in Doklady Akademii Nauk, 2012, Vol. 443, No. 3, pp. 310–312.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleksandrov, S.E., Lomakin, E.V. & Dzeng, I.R. Solution of the thermoelastoplastic problem for a thin disk of plastically compressible material subjected to thermal loading. Dokl. Phys. 57, 136–139 (2012). https://doi.org/10.1134/S1028335812030081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335812030081

Keywords

Navigation