Doklady Earth Sciences

, Volume 472, Issue 2, pp 256–259 | Cite as

Manifestations of motions of the Earth’s pole in the El Niño–Southern Oscillation rhythms

  • I. V. Serykh
  • D. M. Sonechkin


We analyze autocorrelations and power spectra of the time series of monthly mean data characterizing sea surface temperature anomalies in the equatorial Pacific in the years 1920–2013 and show that the rhythms of El Niño–Southern Oscillation can be interpreted as the responses of the climate system to the external quasi-periodic forcing generated by the motions of the Earth’s pole. We conclude that the ENSO phenomenon has no prediction limits.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Hameed and R. G. Currie, in Proc. 6th Int. Meeting on Statistical Climatology, Galway, June 19–23, 1995 (Univ. College Press, Galway, 1995), pp. 497–499.Google Scholar
  2. 2.
    D. M. Sonechkin and N. N. Ivachtchenko, CLIVAR Exch. 6 (1), 5–6 (2001).Google Scholar
  3. 3.
    I. Charvatova, J. Coastal Res., Spec. Iss., No. 17, 343–354 (1995).Google Scholar
  4. 4.
    N. S. Sidorenkov, Atmospheric Processes and Rotation of the Earth (Gidrometeoizdat, St. Petersburg, 2002) [in Russian].Google Scholar
  5. 5.
    R. S. Cerveny and J. A. Shaffer, Geophys. Res. Lett. 28 (1), 25–28 (2001).CrossRefGoogle Scholar
  6. 6.
    S.-H. Kim and S. Ostlund, Phys. Rev. Lett. 55 (11), 1165–1168 (1985).CrossRefGoogle Scholar
  7. 7.
    Directions in Chaos, Ed. by B.-L. Hao (World Sci., Singapore, 1987), Vol. 1.Google Scholar
  8. 8.
    V. I. Arnol’d, V. S. Afraimovich, Yu. S. Il’yashenko, and L. P. Shil’nikov, in Totals of Science and Engineering. Modern Problems on Mathematics. Fundamental Fields, Vol. 5: Dynamic Systems–5. Bifurcation Theory (All-Union Inst. Sci. Techn. Inform., Moscow, 1986) [in Russian].Google Scholar
  9. 9.
    F.-F. Jin, J. D. Neelin, and M. Ghil, Science 264, 70–72 (1994).CrossRefGoogle Scholar
  10. 10.
    E. Tziperman, L. Stone, M. Cane, et al., Science 264, 72–74 (1994).CrossRefGoogle Scholar
  11. 11.
    C. Torrence and G. P. Compo, Bull. Am. Meteorol. Soc. 79 (1), 61–78 (1997).CrossRefGoogle Scholar
  12. 12.
    A. Bondeson, E. Ott, and T. M. Antonsen, Phys. Rev. Lett. 55 (20), 2103–2106 (1985).CrossRefGoogle Scholar
  13. 13.
    W. L. Ditto, M. L. Spano, H. T. Savage, et al., Phys. Rev. Lett. 65 (5), 533–536 (1990).CrossRefGoogle Scholar
  14. 14.
    A. Pikovsky and U. Feudel, J. Phys. A: Math. Gen. 27, 5209–5219 (1994).CrossRefGoogle Scholar
  15. 15.
    A. A. Tsonis, P. J. Roebber, and J. B. Elsner, Geophys. Res. Lett. 25 (15), 2821–2823 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia

Personalised recommendations