Skip to main content
Log in

Towards the Theory of X-ray Diffraction Tomography of Crystals with Nanosized Defects

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

X-ray diffraction tomography is an innovative method that is widely used to obtain 2D-phase-contrast diffraction images and the subsequent 3D-reconstruction of structural defects in crystals. The most frequent objects of research are linear and helical dislocations in a crystal, for which plane wave diffraction images are the most informative, since they do not contain additional interference artifacts unrelated to the images of the defects themselves. In this work, the results of modeling and analysis of 2D plane wave diffraction images of a nanodimensional Coulomb-type defect in a Si(111) thin crystal are presented based on the construction of numerical solutions of the dynamic Takagi–Taupin equations. An adapted physical expression for the elastic displacement field of the point defect, which excludes singularity at the defect location in the crystal, is used. A criterion for evaluating the accuracy of numerical solutions of the Takagi–Taupin equations is proposed and used in calculations. It is shown that in the case of the Coulomb-type defect elastic displacement field, out of the two difference algorithms for solving the Takagi–Taupin equations used in their numerical solution, only the algorithm for solving the Takagi–Taupin equations where the displacement field function enters in exponential form is acceptable in terms of the required accuracy-duration of the calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. I. L. Shulpina, E. V. Suvorov, I. A. Smirnova, and T. S. Argunova, Zh. Tekh. Fiz. 92 (10), 1475 (2022). https://www.doi.org/10.21883/JTF.2022.10.53240.23-22

  2. D. A. Zolotov, V. E. Asadchikov, A. V. Buzmakov, V. V. Volkov, I. G. Dyachkova, P. V. Konarev, V. A. Grigoriev, and E. V. Suvorov, New approaches to three-dimensional dislocation reconstruction in silicon from X-ray topo-tomography data, Phys. Usp. 66, 943–950 (2023). https://www.doi.org/10.3367/UFNr.2022.05.039199

  3. S. Takagi, Acta Cryst. 15, 1311 (1962). https://www.doi.org/10.1107/S0365110X62003473

    Article  CAS  Google Scholar 

  4. S. Takagi, J. Phys. Soc. Jpn. 26 (5), 1239 (1969). https://www.doi.org/10.1143/JPSJ.26.1239

    Article  CAS  Google Scholar 

  5. D. Taupin, Bull. Soc. Fr. Mineral. Cristallogr. 87 (4), 469 (1964). https://doi.org/10.3406/bulmi.1964.5769

    Article  CAS  Google Scholar 

  6. V. Mocella, W. -K. Lee, G. Tajiri, D. Mills, C. Ferrero, and Y. Epelboin, J. Appl. Crystallogr. 36, 129 (2003). https://www.doi.org/10.1107/S0021889802020526

    Article  CAS  Google Scholar 

  7. Y. Epelboin and M. Ribet, Phys. Status Solidi A 25, 507 (1974). https://www.doi.org/10.1002/pssa.2210250217

    Article  CAS  Google Scholar 

  8. Y. Epelboin, Mater. Sci. Eng. 73, 1 (1985). https://www.doi.org/10.1016/0025-5416(85)90294-0

    Article  CAS  Google Scholar 

  9. V. Holy, Phys. Status Solidi B 111, 341 (1982). https://www.doi.org/10.1002/pssb.2221110139

    Article  CAS  Google Scholar 

  10. V. Holy, Phys. Status Solidi B 112, 161 (1982). https://www.doi.org/10.1002/pssb.2221120118

    Article  CAS  Google Scholar 

  11. I. S. Besedin, F. N. Chukhovskii, and V. E. Asadchikov, Cryst. Rep. 59, 323 (2014). https://www.doi.org/10.1121/1.5138606

    Article  CAS  Google Scholar 

  12. V. Asadchikov, A. Buzmakov, F. Chukhovskii, I. Dyachkova, D. Zolotov, A. Danilewsky, T. Baumbach, S. Bode, S. Haaga, D. Hänschke, M. Kabukcuoglu, M. Balzer, M. Caselle, and E. Suvorov, J. Appl. Cryst. 51, 1616 (2018). https://www.doi.org/10.1107/S160057671801419X

    Article  CAS  Google Scholar 

  13. D. A. Zolotov, V. E. Asadchikov, A. V. Buzmakov, I. G. Dyachkova, and E. V. Suvorov, Zh. Eksp Teor. Fiz. 113 (3), 161 (2021). https://www.doi.org/10.31857/S1234567821030046

  14. P. Reischig, A. King, L. Nervo, N. Vigano, Y. Guilhem, W. J. Palenstijn, K. J. Batenburg, M. Preussdand, and W. Ludwig, J. Appl. Crystallogr. 46, 297 (2013). https://www.doi.org/10.1107/S0021889813002604

    Article  CAS  Google Scholar 

  15. F. N. Chukhovskii, P. V. Konarev, and V. V. Volkov, Sci. Rep. 9 (14216), 2019.

  16. F. N. Chukhovskii, P. V. Konarev, and V. V. Volkov, Crystallogr. Rep. 64 (2), 2019. https://www.doi.org/10.1134/S1063774519020172

  17. F. N. Chukhovskii, P. V. Konarev, and V. V. Volkov, Acta Crystallogr. A 76, 163 (2020). https://www.doi.org/10.1107/S2053273320000145

    Article  CAS  Google Scholar 

  18. Z. Lei, A. Okunev, C. Zhu, G. Verozubova, and C. Yang, J. Crystal Growth 534 (125487), 2020. https://www.doi.org/10.1016/j.jcrysgro.2020.125487

  19. Z. Lei, A. Okunev, C. Zhu, G. Verozubova, and C. Yang, J. Appl. Crystallogr. 51, 361 (2018).

    Article  CAS  Google Scholar 

  20. M. A. Krivoglaz, Diffraction of X-Rays and Neutrons in Nonideal Crystals, Kyiv: Naukova Dumka, 1983 [in Russian].

    Google Scholar 

Download references

Funding

The work was carried out within the framework of the State Assignment for the Federal Scientific Research Center “Crystallography and Photonics,” Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Grigorev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

APPENDIX

APPENDIX

Let us derive an expression for the divergence of the vector \(\left\langle {{{I}_{0}},{{I}_{h}}} \right\rangle \) for the nonabsorbing crystal from the Takagi–Taupin equations. To do this, we multiply the first and second Eqs. of system (1) by complex conjugates \(D_{0}^{*}\) and \(D_{h}^{*}\):

$$\begin{gathered} - \frac{{2i}}{k}\frac{{\partial {{D}_{0}}}}{{\partial {{s}_{0}}}}D_{0}^{*} = {{\chi }_{{\bar {h}}}}{{D}_{h}}D_{0}^{*}{\text{exp}}\left( { - i{\mathbf{hu}}} \right), \\ - \frac{{2i}}{k}\frac{{\partial {{D}_{h}}}}{{\partial {{s}_{h}}}}D_{h}^{*} = {{\chi }_{h}}{{D}_{0}}D_{h}^{*}{\text{exp}}\left( {i{\mathbf{hu}}} \right). \\ \end{gathered} $$
(7)

Function arguments are omitted for clarity and compactness of expressions. Since we do not take absorption into account, the imaginary parts \({{\chi }_{h}}\) and \({{\chi }_{{\bar {h}}}}\) are equal to zero; that is, they will not change during complex conjugation. In this case, subtracting Eqs. (7) from the complex conjugates we obtain

$$\begin{gathered} \frac{{2i}}{k}\left( {\frac{{\partial {{D}_{0}}}}{{\partial {{s}_{0}}}}D_{0}^{*} + \frac{{\partial D_{0}^{*}}}{{\partial {{s}_{0}}}}{{D}_{0}}} \right) \\ = C{{\chi }_{{\bar {h}}}}\left( {D_{h}^{*}{{D}_{0}}{\text{exp}}\left( {i{\mathbf{hu}}} \right) - {{D}_{h}}D_{0}^{*}{\text{exp}}\left( { - i{\mathbf{hu}}} \right)} \right), \\ \frac{{2i}}{k}\left( {\frac{{\partial {{D}_{h}}}}{{\partial {{s}_{h}}}}D_{h}^{*} + \frac{{\partial D_{h}^{*}}}{{\partial {{s}_{h}}}}{{D}_{h}}} \right) \\ = C{{\chi }_{h}}\left( {D_{0}^{*}{{D}_{h}}{\text{exp}}\left( { - i{\mathbf{hu}}} \right) - {{D}_{0}}D_{h}^{*}{\text{exp}}\left( {i{\mathbf{hu}}} \right)} \right). \\ \end{gathered} $$
(8)

Considering that \({{\chi }_{{\bar {h}}}} = {{\chi }_{h}}\), as well as the obvious relationship:

$$\frac{{\partial {{D}_{i}}}}{{\partial {{s}_{i}}}}D_{i}^{*} + \frac{{\partial D_{i}^{*}}}{{\partial {{s}_{i}}}}{{D}_{i}} = \frac{{\partial (D_{i}^{*}{{D}_{i}})}}{{\partial {{s}_{i}}}} = \frac{{\partial {{I}_{i}}}}{{\partial {{s}_{i}}}},\,\,\,\,~i = 0,h;$$

adding Eqs. (8) we get:

$$\frac{{2i}}{k}\left( {\frac{{\partial {{I}_{0}}}}{{\partial {{s}_{0}}}} + \frac{{\partial {{I}_{h}}}}{{\partial {{s}_{h}}}}} \right) = 0$$

or

$${\text{div}}\left( {{{I}_{0}},~{{I}_{h}}} \right) = \frac{{\partial {{I}_{0}}\left( {{{s}_{0}},~{{s}_{h}}} \right)}}{{\partial {{s}_{0}}}} + \frac{{\partial {{I}_{h}}\left( {{{s}_{0}},~{{s}_{h}}} \right)}}{{\partial {{s}_{h}}}} = 0.$$

Note that the expression is valid for both a defective and an ideal crystal, as well as in the case of an inaccurate Bragg condition (α ≠ 0), but only for the nonabsorbing crystal. In the case of an absorbing crystal, divergence, generally speaking, depends on the coordinates (s0, sh).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigorev, V.A., Konarev, P.V., Chukhovskii, F.N. et al. Towards the Theory of X-ray Diffraction Tomography of Crystals with Nanosized Defects. J. Surf. Investig. 18, 179–184 (2024). https://doi.org/10.1134/S1027451024010257

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451024010257

Keywords:

Navigation