Skip to main content
Log in

The Effect of Heat Treatment on the Microstructure and Phase Composition of Wrought and 3D-Printed Ti–5Al–3Mo–1V Titanium Alloy Samples

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The objective of this research was to compare the microstructure and phase composition of wrought and 3D-printed Ti–5Al–3Mo–1V alloys subjected to quenching and aging. The microstructure of as-obtained wrought alloy and samples prepared by wire-feed electron beam additive manufacturing was studied using optical and scanning electron microscopy, as well as transmission electron microscopy. The phase and chemical compositions of wrought and 3D-printed samples were examined using electron backscatter diffraction and energy-dispersive X-ray microanalysis. X-ray diffraction analysis was used to study the martensitic structure of the Ti–5Al–3Mo–1V alloy samples subjected to quenching at temperatures of 900 and 950°C followed by aging at a temperature of 500°C. It was shown that the volume fraction of residual β‑phase in wrought and 3D-printed samples decreased during quenching, and a martensitic orthorhombic α′′-phase appeared. The formation of the α′′-phase in wrought samples after quenching was believed to be associated with the transformation of β → α′′ in bcc solute-lean interlayers. Quenching of the 3D-printed samples, in turn, promoted the formation of α′′-phase in α' laths which undergo α' → β → α" transformation. With the subsequent aging of the wrought and 3D-printed samples, the volume fraction of the α′′-phase decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. R. A. Wood, E. R. Poulsen, and F. H. Froes, Titanium: Physical Metallurgy, Processing and Applications, (ASM Int., Amsterdam, 2015).

    Google Scholar 

  2. A. O. Mosleh, A. D. Kotov, V. Vidal, A. G. Mochugovskiy, V. Velayc, and A. V. Mikhaylovskaya, Mater. Sci. Eng. 802, 140626 (2021). https://doi.org/10.1016/j.msea.2020.140626

    Article  CAS  Google Scholar 

  3. F. Y. Hung and T. S Lui, J. Mater. Sci. 40, 3683 (2005). https://doi.org/10.1007/s10853-005-3310-z

    Article  ADS  CAS  Google Scholar 

  4. S. P. Akula, M. Ojha, K. L. Rao, and A. K. Gupta, Mater. Today Commun. 34, 105343 (2023). https://doi.org/10.1016/j.mtcomm.2023.105343

    Article  CAS  Google Scholar 

  5. A. Amirov, A. Chumaevskii, N. Savchenko, D. Gurianov, A. Nikolaeva, V. Krasnoveykin, A. Ivanov, V. Rubtsov, and E. Kolubaev, Metals 13, 222 (2023). https://doi.org/10.3390/met13020222

    Article  CAS  Google Scholar 

  6. M. X. Mukhametrakhimov, Lett. Mater. 7, 193 (2017). https://doi.org/10.22226/2410-3535-2017-2-193-197

    Article  Google Scholar 

  7. V. N. Moiseyev, Titanium Alloys: Russian Aircraft and Aerospace Applications (CRC, Boca Raton, 2005).

    Book  Google Scholar 

  8. B. Dutta and F.H. Sam Froes, Additive Manufacturing of Titanium Alloys (Elsevier, Amsterdam, 2015).

    Google Scholar 

  9. D. Herzog, V. Seyda, E. Wycisk, and C. Emmelmann, Acta. Mater. 117, 371 (2016). https://doi.org/10.1016/j.actamat.2016.07.019

    Article  ADS  CAS  Google Scholar 

  10. N. V. Kazantseva, P. V. Krakhmalev, I. A. Yadroitsava, and I. A. Yadroitsev, Probl., Phys. Metals Metallogr. 122, 6 (2021). https://doi.org/10.1134/s0031918x21010063

    Article  ADS  CAS  Google Scholar 

  11. T. S. Singhal, J. K. Jain, and M. Kumar, Int. J. Interact. Des. Manuf. (2023). https://doi.org/10.1007/s12008-022-01152-0

  12. C. Li, Z. Y. Liu, X. Y. Fang, and Y. B. Gu, Procedia CIRP 71, 348 (2018). https://doi.org/10.1016/j.procir.2018.05.039

    Article  Google Scholar 

  13. S.-G. Chen, H.-J. Gao, Y.-D. Zhang, Q. Wu, Z.-H. Gao, and X. Zhou, J. Mater. Res. Technol. 17, 2950 (2022). https://doi.org/10.1016/j.jmrt.2022.02.054

    Article  CAS  Google Scholar 

  14. R. R. Boyer, Encyclopedia of Aerospace Engineering (Wiley, London, 2010). https://doi.org/10.1002/9780470686652.eae198

    Book  Google Scholar 

  15. A. V. Panin, M. S. Kazachenok, L. A. Kazantseva, S. A. Martynov, A. A. Panina, and T. A. Lobova, J. Surf. Invest.; X-ray, Synhrotron Neutron Tech. 16, 983 (2022). https://doi.org/10.1134/S1027451022060180

    Article  CAS  Google Scholar 

  16. K. Osipovich, K. Kalashnikov, A. Chumaevskii, D. Gurianov, T. Kalashnikova, A. Vorontsov, A. Zykova, V. Utyaganova, A. Panfilov, A. Nikolaeva, A. Dobrovolskii, V. Rubtsov, and E. Kolubaev, Metals 13, 279 (2023). https://doi.org/10.3390/met13020279

    Article  CAS  Google Scholar 

  17. E. A. Kolubaev, V. E. Rubtsov, and A. V. Chumaevsky, Phys. Mesomech. 25, 479 (2022). https://doi.org/10.1134/S1029959922060017

    Article  Google Scholar 

  18. I. C. Noyan and J. B. Cohen, Residual Stress: Measurement by Diffraction and Interpretation (Springer, New York, 2013).

    Google Scholar 

  19. P. Gao, M. Fu, M. Zhan, Z. Lei, and Y. Li, J. Mater. Sci. Eng. 39, 56 (2020). https://doi.org/10.1016/j.jmst.2019.07.052

    Article  CAS  Google Scholar 

  20. S. Mironov, M. Murzinova, S. Zherebtsov, G. A. Salishchev, and S. L. Semiatin, Acta Mater. 57, 2470 (2009). https://doi.org/10.1016/j.actamat.2009.02.016

    Article  ADS  CAS  Google Scholar 

  21. C. J. Todaro, M. A. Easton, and D. Qiu, Nat. Commun. 11, 142 (2020). https://doi.org/10.1038/s41467-019-13874-z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. O. B. Perevalova, A. V. Panin, and M. S. Syrtanov, J. Mater. Eng. Perf. (2023). https://doi.org/10.1007/s11665-023-08675-x

  23. C.-X. Li, H.-B. Luo, Q.-M. Hu, R. Yang, F.-X. Yin, O. Umezaw, and L. Vitos, Solid State Commun. 159, 70 (2013). https://doi.org/10.1016/j.ssc.2013.01.026

    Article  ADS  CAS  Google Scholar 

  24. L. Zeng and T. R. Bieler, Mater. Sci. Eng. 392, 403 (2005). https://doi.org/10.1016/j.msea.2004.09.072

    Article  CAS  Google Scholar 

  25. H. Jaber, J. Konya, K. Kulcsar, and T. Kovacs, Materials 15, 1978 (2022). https://doi.org/10.3390/ma15051978

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. J. Teixeira, D. Marechal, R. C. Wimpory, S. Denis, and F. Lefebvre, Mater. Sci. Eng., A 832, 142456 (2022). https://doi.org/10.1016/j.msea.2021.142456

    Article  CAS  Google Scholar 

Download references

Funding

The work was financially supported by the Russian Science Foundation (grant no. 21-19-00795). The investigations were carried out using the equipment of the Shared Use Center “Nanotech” of the Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences and the Center for Sharing Use “Nanomaterials and Nanotechnologies” of Tomsk Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Panin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panin, A.V., Lobova, T.A., Kazachenok, M.S. et al. The Effect of Heat Treatment on the Microstructure and Phase Composition of Wrought and 3D-Printed Ti–5Al–3Mo–1V Titanium Alloy Samples. J. Surf. Investig. 17 (Suppl 1), S166–S173 (2023). https://doi.org/10.1134/S102745102307039X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745102307039X

Keywords:

Navigation