Skip to main content
Log in

Observation of Surface Plasmon Resonance in Monochromatic Terahertz Radiation on Indium Antimonide

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Currently, the terahertz-frequency range, which is on the border of the microwave and optical ranges, is being intensively utilized. One of the widely used materials in terahertz optics is indium antimonide (InSb), the plasma frequency of which depends on the degree of doping, temperature, and surface illumination. The possibility of generating surface plasmon polaritons, a type of surface electromagnetic waves, on the surface of an InSb sample using the attenuated-total-reflection method (ATR) (Otto scheme) is discussed. Using the scattering-matrix formalism, the conditions for the highest efficiency of the excitation of surface plasmon polaritons are established. If terahertz radiation with a frequency ω slightly less than ωp is used for this, the propagation length of such plasmons and the depth of their field penetration into the environment (air) are comparable to the radiation wavelength. It is possible to achieve surface plasmon resonance in the form of a sharp decrease in the intensity of monochromatic radiation reflected from the base of the ATR prism with a change in the angle of incidence and the size of the air gap. Test experiments were performed to observe the surface plasmon resonance on an InSb wafer using a high-resistance silicon prism and monochromatic radiation (λ = 141 μm) from the Novosibirsk free electron laser. The dependence of the resonant dip on the size of the air gap separating the prism from the sample surface is studied, and its optimal (in the case of resonance) value is established for semiconductors with a plasma frequency in the terahertz range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. Soler and L. M. Lechuga, J. Appl. Phys. 129, 111102 (2021). https://doi.org/10.1063/5.0042811

    Article  CAS  Google Scholar 

  2. L. C. Oliveira, A. M. Nogueira Lima, C. Thirstrup, and H. F. Neff, Surface Plasmon Resonance Sensors: A Materials Guide to Design, Characterization, Optimization, and Usage (Springer, Cham, 2015).

    Book  Google Scholar 

  3. P. Berini and I. de Leon, Nat. Photonics 6, 16 (2012). https://doi.org/10.1038/nphoton.2011.285

    Article  CAS  Google Scholar 

  4. M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, Science 358, 630 (2017). https://doi.org/10.1126/science.aan5953

    Article  CAS  Google Scholar 

  5. Z. Liu, Plasmonics and Super-Resolution Imaging (Jenny Stanford, New York, 2017).

    Book  Google Scholar 

  6. W. O. F. Carvalho and J. R. Mejia-Salazar, Sensors 20, 2488 (2020). https://doi.org/10.3390/s20092488

    Article  CAS  Google Scholar 

  7. A. M. Shrivastav, U. Cvelbar, and I. Abdulhalim, Commun. Biol. 4, 70 (2021). https://doi.org/10.1038/s42003-020-01615-8

    Article  CAS  Google Scholar 

  8. S. Balbinot, A. M. Srivastav, J. Vidic, I. Abdulhalim, M. Manzano, Trends Food Sci. Technol. 111, 128 (2021). https://doi.org/10.1016/j.tifs.2021.02.057

    Article  CAS  Google Scholar 

  9. Q.-H. Phan, Q.-H. Phan, Y.-R. Lai, W.-Z. Xiao, T.‑T. Pham, and C.-H. Lien, Opt. Express 28, 24889 (2020). https://doi.org/10.1364/OE.400721

    Article  CAS  Google Scholar 

  10. X. Chen, H. Lindley-Hatcher, R. I. Stantchev, J. Wang, K. Li, A. Serrano Hernandez, Z. D. Taylor, E. Castro-Camus, and E. Pickwell-MacPherson, Chem. Phys. Rev. 3, 011311 (2022). https://doi.org/10.1063/5.0068979

    Article  CAS  Google Scholar 

  11. A. Banerjee, B. Chakraborty, H. Inokawa, and R. J. Nath, Terahertz Biomedical and Healthcare Technologies: Materials to Devices (Elsevier, Amsterdam, 2020).

    Google Scholar 

  12. A. Krotkus, J. Phys. D: Appl. Phys. 43, 273001 (2010). https://doi.org/10.1088/0022-3727/43/27/273001

    Article  CAS  Google Scholar 

  13. J. S. Ranjana, Investigations on InSb plasmonic devices for sensor applications at terahertz frequencies, PhD Thesis (Surathkal: Natl. Inst. Technol. Karnataka, 2017).

  14. D. Barchiesi, in New Perspectives in Biosensors Technology and Applications, Ed. by P. A. Serra (IntechOpen, London, 2011), p. 105. https://doi.org/10.5772/16657

  15. O. Kameshkov, V. Gerasimov, and B. Knyazev, Sensors 22, 172 (2021). https://doi.org/10.3390/s22010172

    Article  CAS  Google Scholar 

  16. V. V. Gerasimov, B. A. Knyazev, I. A. Kotelnikov, A. K. Nikitin, V. S. Cherkassky, G. N. Kulipanov, and G. N. Zhizhin, J. Opt. Soc. Am. B 30, 2182 (2013). https://doi.org/10.1364/JOSAB.30.002182

    Article  CAS  Google Scholar 

  17. J. Chochol, K. Postava, M. Čada, M. Vanwolleghem, M. Mičica, L. Halagačka, J.-F. Lampin, and J. Pištora, J. Eur. Opt. Soc.-Rapid Publ 13, 13 (2017). https://doi.org/10.1186/s41476-017-0044-x

    Article  Google Scholar 

  18. Handbook Series on Semiconductor Parameters, Vol. 1: Si, Ge, C (Diamond), GaAs, GaP, GaSb, InAs, InP, InSb, Ed. by M. Levinshtein, S. Rumyantsev, and M. Shur, (World Sci., Singapore, 2000).

    Google Scholar 

  19. Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces, Ed. by V. M. Agranovich and D. L. Mills (Elsevier, New York, 1982; Nauka, Moscow, 1985).

  20. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Heidelberg, 1988). https://doi.org/10.1007/BFb0048319

  21. D. Barchiesi and A. Otto, Riv. Nuovo Cimento 36, 173 (2013). https://doi.org/10.1393/ncr/i2013-10088-9

    Article  CAS  Google Scholar 

  22. J. Shibayama, K. Mitsutake, J. Yamauchi, and H. Nakano, Microwave Opt. Technol. Lett. 63, 103 (2021). https://doi.org/10.1002/mop.32581

    Article  Google Scholar 

  23. M. M. Nazarov, E. A. Bezus, and A. P. Shkurinov, Laser Phys. 23, 056008 (2013).

    Article  CAS  Google Scholar 

  24. M. Hilal, B. Rashid, S. H. Khan, and A. Khan, Mater. Chem. Phys. 184, 41 (2016). https://doi.org/10.1016/j.matchemphys.2016.09.009

    Article  CAS  Google Scholar 

  25. O. S. Komkov, D. D. Firsov, T. V. Lvova, I. V. Sedova, A. N. Semenov, V. A. Solov’ev, and S. V. Ivanov, Phys. Solid State 58, 2394 (2016).

    Article  CAS  Google Scholar 

  26. A. K. Nikitin, V. V. Gerasimov, B. A. Knyazev, N. T. H. Lien, and T. T. Trang, J. Phys.: Conf. Ser. 1636, 012036 (2020). https://doi.org/10.1088/1742-6596/1636/1/012036

    Article  CAS  Google Scholar 

  27. I. Sh. Khasanov, L. A. Zykova, A. K. Nikitin, B. A. Knyazev, V. V. Gerasimov, and T. T. Trang, in Proc. 45th Int. Conf. on Infrared, Millimeter, and Terahertz Waves (Buffalo, 2020), p. 1. https://doi.org/10.1109/IRMMW-THz46771.2020.9370795

  28. J. Chochol, M. Mičica, K. Postava, M. Vanwolleghem, J.-F. Lampin, M. Čada, and J. Pištora, in Proc. 43rd Int. Conf. on Infrared, Millimeter, and Terahertz Waves (Nagoya, 2018), p. 1. https://doi.org/10.1109/IRMMW-THz.2018.8510484

  29. H. Hirori, M. Nagai, and K. Tanaka, Opt. Express 13, 10801 (2005). https://doi.org/10.1364/OPEX.13.010801

    Article  CAS  Google Scholar 

  30. M. M. Nazarov, A. P. Shkurinov, F. Garet, and J.‑L. Coutaz, IEEE Trans. Terahertz Sci. Technol. 5, 680 (2015). https://doi.org/10.1109/TTHZ.2015.2443562

    Article  CAS  Google Scholar 

  31. K. Postava, J. Chochol, M. Mičica, M. Vanwolleghem, P. Kolejak, L. Halagačka, M. Čada, J. Pištora, and J.‑F. Lampin, Proc. SPIE 10142, 1014207 (2016). https://doi.org/10.1117/12.2264550

    Article  Google Scholar 

  32. S. C. Howells and L. A. Schlie, Appl. Phys. Lett. 69, 550 (1996). https://doi.org/10.1063/1.117783

    Article  CAS  Google Scholar 

  33. J. Chochol, K. Postava, M. Čada, M. Vanwolleghem, L. Halagačka, J.-F. Lampin, and J. Pištora, AIP Adv 6, 115021 (2016). https://doi.org/10.1063/1.4968178

    Article  CAS  Google Scholar 

  34. E. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1991).

    Google Scholar 

  35. Q. Wang, Q. Tang, D. Zhang, Z. Wang, and Y. Huang, Superlattices Microstruct. 75, 955 (2014). https://doi.org/10.1016/j.spmi.2014.09.015

    Article  CAS  Google Scholar 

  36. J. Tao, B. Hu, X. Y. He, and Q. J. Wang, IEEE Trans. Nanotechnol. 12, 1191 (2013). https://doi.org/10.1109/TNANO.2013.2285127

    Article  CAS  Google Scholar 

  37. T. H. Isaac, J. Gómez Rivas, J. R. Sambles, W. L. Barnes, and E. Hendry, Phys. Rev. B 77, 113411 (2008). https://doi.org/10.1103/PhysRevB.77.113411

    Article  CAS  Google Scholar 

  38. P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, J. Appl. Phys. 91, 5533 (2002). https://doi.org/10.1063/1.1465507

    Article  CAS  Google Scholar 

  39. E. Litwin-Staszewska, W. Szymanska, and R. Piotrzkowski, Phys. Status Solidi B 106, 551 (1981). https://doi.org/10.1002/pssb.2221060217

    Article  CAS  Google Scholar 

  40. J. Chochol, K. Postava, M. Čada, and J. Pištora, Sci. Rep. 7, 13117 (2017). https://doi.org/10.1038/s41598-017-13394-0

    Article  CAS  Google Scholar 

  41. T. V. Lvova, M. S. Dunaevskii, M. V. Lebedev, A. L. Shakhmin, I. V. Sedova, and S. V. Ivanov, Semiconductors 47, 721 (2013).

    Article  CAS  Google Scholar 

  42. R. W. Cunningham and J. B. Gruber, J. Appl. Phys. 41, 1804 (1970). https://doi.org/10.1063/1.1659107

    Article  CAS  Google Scholar 

  43. E. H. Putley, Appl. Opt. 4, 649 (1965). https://doi.org/10.1364/AO.4.000649

    Article  CAS  Google Scholar 

  44. F. Fan, S. Chen, and S.-J. Chang, IEEE J. Sel. Top. Quantum Electron. 23, 8500111 (2017). https://doi.org/10.1109/JSTQE.2016.2537259

    Article  Google Scholar 

  45. P. Byszewski, J. Kolodziejczak, and S. Zukotynski, Phys. Status Solidi B 3, 1880 (1963). https://doi.org/10.1002/pssb.19630031014

    Article  Google Scholar 

  46. S. J. Byrnes, arXiv:1603.02720[physics] (2020).

  47. A. V. Anisimov and I. Sh. Khasanov, J. Phys.: Conf. Ser. 2091, 012067 (2021). https://doi.org/10.1088/1742-6596/2091/1/012067

    Article  Google Scholar 

  48. V. V. Gerasimov, J. Opt. Technol. 77, 465 (2010). https://doi.org/10.1364/JOT.77.000465

    Article  CAS  Google Scholar 

  49. V. V. Gerasimov, G. N. Zhizhin, B. A. Knyazev, I. A. Kotelnikov, N. A. Mitina, and A. K. Nikitin, Bull. Russ. Acad Sci.: Phys. 77, 1167 (2013). https://doi.org/10.3103/S1062873813090141

    Article  CAS  Google Scholar 

  50. B. A. Knyazev, AIP Conf. Proc. 2299, 030001 (2020). https://doi.org/10.1063/5.0030349

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed using equipment of the Collective Use Center “Siberian Center of Synchrotron and Terahertz Radiation” on the base of the universal scientific installation Novosibirsk free-electron laser at the Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences.

Funding

Theoretical analysis was supported by the Ministry of Science and Higher Education of the Russian Federation (state assignment FFNS-2022-0009) V.K. acknowledges support from Project no. FSSF-2023-0003.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. Sh. Khasanov or V. V. Gerasimov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khasanov, I.S., Gerasimov, V.V., Kameshkov, O.E. et al. Observation of Surface Plasmon Resonance in Monochromatic Terahertz Radiation on Indium Antimonide. J. Surf. Investig. 17, 1052–1059 (2023). https://doi.org/10.1134/S1027451023050208

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023050208

Keywords:

Navigation